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1. Executive Summary 
The purpose of D2.1 is for the management and funders of EUCP to have the ability to track 

completion of the tasks originally outlined in Task 2.1, but which are now reported within 

D2.2, along with the output of Task 2.2.   It offers reassurance that the merging of these two 

tasks, which had good scientific grounds, has not led to any of the earlier tasks not being 

adequately addressed.   

This deliverable was originally intended to report on the application and evaluation of 

constraints on a range of future climate projections using observations of historical climate 

(based on Task 2.1 activity). However, many of the results from these activities are now 

documented and discussed within a joint deliverable, D2.2, with Task 2.2.   

The work performed and the main results can be found in the extended D2.2 deliverable. A 

summary of Task 2.1 activities, based around four themes, is given here: 

• Selection of observational constraints: Observational constraints have been selected 

for all methods. They are detailed in the method description of each method (and 

briefly summarized in section 4.1). In this deliverable we also:  

o Summarize CNRS/CNRM’s ongoing evaluation of further potential 

observational constraints (beyond current implementations) 

o Provide an early assessment of how CMIP6 may change the constraint picture 

• Application of detection and attribution methods to derive constraints: Two 

approaches to isolate the human influence on climate have been implemented and 

are detailed in the extended D2.2 deliverable. Here we briefly note ongoing 

development of these methods. 

• Impact of selected observations on European climate: Most of the important 

progress has been in this area and this is documented in the D2.2 deliverable  

• Provision of information to Task 2.2: This activity has been completed for most groups 

and all methods have produced projections based on the selected constraints. CNRM 

has the ambition to further develop potential observational constraints, beyond these 

initial deliverables.   

The motivation for the merger with D2.2 is outlined in more detail in the deliverable outline 

(Section 3.1) and lessons learnt (Section 5). To summarize: in practice it was not possible to 

isolate the impact of observational constraints without first implementing these observations 

within the climate projection methods and insights on the value of the observations were 

often method dependent. The extended deliverable avoids duplication of common 

information between the two deliverables D2.1 and D2.2 that would have resulted if they had 

not been merged.  
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2. Project Objectives 
WITH THIS DELIVERABLE, EUCP HAS CONTRIBUTED TO THE ACHIEVEMENT OF THE FOLLOWING OBJECTIVES 

(DESCRIPTION OF ACTION, SECTION 1.1): 
 

No. Objective Yes No 

1 
Develop an ensembles climate prediction system based on 
high-resolution climate models for the European region 
for the near-term (~1-40 years) 

  no 

2 
Use the climate prediction system to produce consistent, 
authoritative and actionable climate information 

yes   

3 
Demonstrate the value of this climate prediction system 
through high impact extreme weather events in the near 
past and near future 

  no 

4 
Develop, and publish, methodologies, good practice and 
guidance for producing and using EUCP’s authoritative 
climate predictions for 1-40 year timescales yes   
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3. Overview  
3.1. Deliverable Outline 

This deliverable focuses on the evaluation and combination of potential observational 

and/or emergent constraints relevant to European climate projections explored as part 

of the development and implementation of the climate projections (described in 

Deliverable D2.2).  

As has been agreed with the European Commission, the core of the analysis that 

contributed to this activity will form part of an extended D2.2 deliverable.  This is because 

much of the evaluation of observational constraints required their implementation 

within the projections (mainly to assess what impact or value a given observation or 

approach had in narrowing spread in future projected changes).  This report is structured 

around the four main activities of Task 2.1 (which informs deliverable D2.1) as follows:  

• Selection of constraints from the literature (Section 4.1) 

• Application of detection and attribution methods to derive constraints (Section 

4.2) 

• Impact of constraints on the European regions (Section 4.3) 

• Provision of constraints to Task 2.2 (Section 4.4) 

Section 4.3 represents the activity that took most of the focus across the participating 

groups.  The impacts of the constraints are at the core of the paper submitted (Brunner 

et al., 2020).  

3.2. Science overview 

Deliverable D2.1 documents the progress towards the Task 2.1 objectives.  Selections of 

observational constraints have been made for all the methods that contribute to WP2 

(see method description document) and these methods have now been applied. For most 

groups, the emphasis is now shifting on to their application though there is some work 

to do by all groups in further understanding the role of the constraints that have been 

selected. The work at CNRM has the ambition to select and integrate further 

observational constraints beyond those that are current implemented in their method 

(method description document, Section B.4). For CNRM therefore, a continued active 

development in Task 2.1 is anticipated, to identify further observational constraints (we 

outline some of this activity in section 4.1.2).   

The highlight of the work so far has been establishing the role of observations in 

narrowing the spread of future projected changes.  The impact of these observational 

constraints can be seen by comparing the constrained and unconstrained distributions 

(see Brunner et al., 2020). Some important findings have emerged from this work. In 

particular, observations tend to suggest that larger warmings responses are less likely, 

regardless of the method or choice or observation used across the different climate 

projection techniques.  These are key results in the core paper that will be submitted in 

time to inform the IPCC AR6 report (deadline December 2019). These results are 

discussed and detailed in the D2.2 deliverable. 
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4. Core Task 2.1 activities 
4.1. Selection of observational constraints from the literature 

 

Most constraints have been selected and applied within their respective methods. These 

are briefly summarized here with details in the D2.2 deliverable. CNRM is the one group 

that is continuing to actively develop their method with a view of selecting further 

observational constraints.  As such, we detail their progress in Section 4.1.2.  

 

4.1.1. Locating analysis in D2.2 deliverable 

The selected observational constraints are detailed in the method description document 

for each of the methods. Here we briefly summarize the nature of the observations 

selected by each Task 2.1 partner.  

ETHZ. Observations used to constrain future projections in the context of model weighting 

are here referred to as diagnostics following, e.g., Brunner et al. (2019). An overview of 

weighting diagnostics in general and diagnostics used in the ETHZ method (ClimWIP) for 

Europe in particular, are discussed in Section B.1 of the method description document. 

As a short summary we here list the diagnostics selected and applied within deliverables 

2.1 and 2.2 by ClimWIP: temperature (climatology), precipitation (climatology), shortwave 

downward radiation (climatology), shortwave upward radiation (climatology and variance), 

longwave downward radiation (variance). The selection process and related issues are also 

discussed in Brunner et al. (2019) and Lorenz et al. (2018). 

UEDIN. The Detection and Attribution approach taken by Edinburgh, and explored as 

potential input in the CNRM method, relies on identifying a human fingerprint on climate 

using parallel historical experiments that isolate the responses to given forcings. Once 

identified, it is then possible to quantify what role these fingerprints had in historical observed 

climate records – which can be used to scale the human contributions to future changes.  The 

approach adopted by Edinburgh is to use optimal fingerprinting, which is already well 

established in the literature (see method description document, Section B.3). This relies on 

identifying the European scale human pattern in historical temperature and precipitation (for 

projections of temperature and precipitation, respectively) and scaling the projected changes 

so that the future scaled response is consistent with the optimal fingerprint found in the 

observed historical changes. A detailed description can be found in section B.3 of the method 

description document. 

CNRM. The CNRM method, as currently implemented, makes use of the observed warming 

during the historical period.  This uses both global temperature responses and the 

temperature changes in the target region.  They are continuing to explore the potential to 

combine these with process-based emergent constraints.  The observed warming constraints 

have shown clear value in narrowing future climate projection spread (see Brunner et al., 

2020). The process-based emergent constraint aspect is still in development, and is 

documented below and in section B.4 in the method description document. 
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Met Office. The Met Office probabilistic method (section B.5 of method description 

document) makes use of a broad basket of observations. These fall into two categories: (i) 

observed estimates of a broad range of climatological variables (such as temperature, 

humidity, satellite radiation budget, ISCCP cloud amounts) and (ii) observed estimates of 

historical trends in surface temperature (Briganza estimates); ocean heat content and 

observed atmospheric CO2.  

 

4.1.2. Summary of CNRM activities 

CNRM worked on providing a constrained probabilistic projection of future changes  of 

the European climate by combining two sources of information: (i) the observed warming 

during the historical period and (ii) process-based emergent constraints, both using 

CMIP5. The main output of this technique is a constrained probability density function 

describing uncertainty on future changes, contributing to Tasks 2.1 and 2.2.  

A constraint based on observed warming to date is implemented by considering both 

global and regional mean temperature. We (i) estimate the forced response of each CMIP 

model over the historical period, (ii) construct a multi-model distribution which 

characterizes the model uncertainty in this forced response, and then (iii) sub-select 

those trajectories which are consistent with available observations, given internal 

variability. Results obtained using this procedure are illustrated in Figure 1, where it is 

shown that this constraint leads to a clear reduction of projected future changes in 

European summer mean temperatures. 

Several process-based metrics have been proposed in the literature to constrain future 

climate changes. This approach consists in identifying a relationship among the models 

between (i) a metric characterizing a physical process in present-day climate and (ii) the 

response of the variable of interest in projections. This relationship is based on the 

assumption that the physical processes existing in the present climate are also involved in 

driving the future response. Hence, adding the information provided by the observed metric 

allows the selection of the most realistic models in the present climate, which are likely to 

provide the most reliable climate projections. 

Four metrics from literature have been investigated to constrain projections of European 

summer temperature. First, Boé and Terray (2014) found that models characterized by a 

limitation of evapotranspiration by soil moisture tend to simulate larger 

evapotranspiration decreases and consequently larger surface warming. Second, they 

also point out that models with a large present-day interannual anti-correlation between 

cloud cover and temperature over land tend to simulate larger future decrease in cloud 

cover and therefore a larger surface warming. Third, Cattiaux, Douville and Peings (2013) 
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suggest that CMIP5 models overestimate summer temperatures in Central Europe over 

the historical period and this may impact the forced response as well. Finally, we 

investigate the relationship between the temperature trend over the recent period 

(1979-2014) and temperature changes in projections, following Douville and Plazzotta 

(2017), who suggest that the projected midlatitude summer drying is underestimated by 

most CMIP5 models.  

In order to quantify the respective contributions of the above-mentioned metrics in the 

temperature changes, a general multiple regression between temperature changes and 

the listed metrics has been calculated for 17 CMIP5 models. For each spatial grid point, 

we consider the “most relevant” metric (or predictor) as the one minimizing the Bayesian 

Figure 1 Observations of European summer mean temperature since 1850 (black points), compared to the multi-model 
distribution of the forced response of this variable to historical forcings and RCP8.5 scenario (multi-model mean in solid 
line, and 5-95% confidence region in light pink). Uncertainty in European summer mean temperature changes decreases 
after applying an observational constraint combining observations in European summertime temperature and those of 
global mean temperature since 1850 (constrained 5-95% confidence region in dark pink). Best estimates before (light 
brown) and after (brown) applying the observational constraints are almost indistinguishable in this case during the 

historical period, as observations are well consistent with the multi-model mean estimate. All values are temperature 
anomalies with respect to the 1870-2018 period. 
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information criterion among all the possible statistical models (i.e. , using all 

combinations of predictors). Results suggest that Europe is not uniformly sensitive to a 

single metric in terms of temperature changes (Figure 2). Several sub-regions are 

noticeable, e.g., western Europe more is sensitive to the role of clouds, while the 

Mediterranean basin is more sensitive to temperature bias. 

Investigations are currently being done in order to effectively combine temperature time 

series (Figure 1) with the physically-based constraints (Figure 2), and assess the sensitivity 

of the statistical method to several intrinsic parameters: model error matrices (internal 

variability), number and strength of the physically-based constraints, estimation of the 

relationships between constraints and historical temperature/precipitations.  

 

4.1.3. Emergent constraints in the upcoming CMIP6 

First studies are being carried out based on the already available CMIP6 models. Motivated 

by findings that several of the new CMIP6 models have considerably higher climate sensitivity 

(both in terms of Equilibrium Climate Sensitivity and Transient Climate Response), hence 

showing more warming compared to CMIP5 (Gettelman et al., 2019; Voldoire et al., 2019: 

Voosen, 2019; K.B. Tokarska et al., 2020b) look into the recent warming trend for the period 

1981-2014 in CMIP5 and CMIP6. They find it to be strongly correlated with the transient 

climate response (TCR). This strong correlation (Figure 3a-c) can serve as an emergent 

constraint on the TCR. High TCR models have difficulties reproducing the observed warming 

trend. The observationally-constrained likely ranges of TCR estimate based on CMIP6, CMIP5 

or both combined (Figure 3a-c blue rectangle; Figure 3d blue boxes) are consistent but 

substantially narrower than those reported by IPCC AR5 of 1.0 - 2.5 °C, regardless of the set 

Figure 2 Regression between multi-model temperature changes (2041-2060 relative to 1995-
2014) and different metrics (i.e. potential observational constraints) over the reference period: 
temperature bias (bias_tas), evaporative fraction (Clim_ef), correlation between shortwave 
cloud radiative effect and temperature (Cor_tas_swcre), temperature trend (Trend_tas). The 
most relevant predictor is shaded for each grid point. If no predictor is relevant, the associated 
grid point is shaded in blue (Intercept). 
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of models used. The two likely ranges (derived here and the IPCC one) are.  Reduction in 

projected ranges indicate that more of the original range of projected TCRs can be excluded 

due to this constraint, however, these reduced ranges may not be fully comparable as 

different lines of evidence were combined in AR5 leading to a broader uncertainty range in 

that case. The observationally-constrained TCR likely range based on CMIP6 models alone, of 

1.24 to 2.00 °C (“likely”, 17-83%) with a median of 1.63 °C, is narrower and lower than the 

raw CMIP6 likely range (of 1.57 to 2.64 °C, median 1.98 °C;  Figure 2d grey CMIP6 bar). These 

results from observationally-constrained TCR range in CMIP6 are consistent with a recent 

median TCR estimate of 1.67 °C derived from CMIP5 models and a slightly earlier 

observational period (Jiménez-de-la-Cuesta and Mauritsen, 2019).   

 

4.1.4. Reassessing weighting diagnostics for CMIP6 

Due to the delay in the provision of many of the CMIP6 models all diagnostics used in the ETH 

method (referred to as ClimWIP in D2.1) are based on CMIP5 and have not yet been tested 

for CMIP6 in detail. However, an analysis of all available CMIP6 models is currently ongoing. 

This analysis is currently limited to only three temperature-based diagnostics (climatology, 

Figure 3: Correlation of the simulated warming trend for the period 1981-2014 with TCR. (a) 
based on CMIP6 models; (b) based on CMIP5 models; (c) based on the joint distribution of 
CMIP6 models (circles) and CMIP5 models (triangles). (d) Constrained and unconstrained 
ranges of TCR based on CMIP6 and CMIP5 models (following from panels a-c), compared 
with the IPCC AR5 likely range. Unconstrained ranges (gray box plots) are based on raw CMIP 
models, shown to the left of each box plot by individual dots. Constrained ranges (blue box 
plots) are based on the emergent constraint (as in top panels). The last box plot in panel (d) 
shows the IPCC AR5 likely (>66% probability; equivalent to 17-83% range) range. Each box 
plot shows 5-95% range, likely range, and median value, as illustrated in the legend. Note 
that the AR5 likely range is an assessment across multiple lines of evidence and studies and 
thus not fully comparable. Reprinted from K.B. Tokarska et al. (submitted-b) with friendly 
permission from the authors. 
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variance and trend) to maximize the number of available models. It uses 40 CMIP5 models 

and the 13 CMIP6 models which currently provide temperature projections based on the new 

Socioeconomic Pathway 5-8.5 (SSP585) (Gidden et al., 2019), which is comparable to the 

Representative Concentration Pathway 8.5 (RCP85) (van Vuuren et al., 2011) used in CMIP5. 

The rest of the setup is equivalent to the one used in the work for D2.1 and D2.2 and which is 

detailed in Brunner et al. (2019). 

Figure 4 shows the unconstrained and constrained time evolution of European summer (JJA) 

temperature for CMIP5 and CMIP6. It is evident that the unconstrained CMIP6 models 

available so far reach, on average, considerably higher temperatures than most CMIP5 

simulations. Part of stronger warming is related to differences in experimental design (the 

radiative forcing is expected to differ between SSP585 used in CMIP6 and RCP85 used in 

CMIP5), but it has also been found that CMIP6 contains several models with considerably 

higher climate sensitivity compared to CMIP5 (Gettelman et al., 2019; Voldoire et al., 2019; 

Voosen, 2019). It will therefore be essential to establish if these high climate sensitivity 

models are consistent with observed changes in the real world using methods such as model 

weighting or emergent constraints (e.g., K.B. Tokarska et al., 2020b). The preliminary 

weighting (based on only three temperature-based diagnostics) indeed leads to a downward 

shift of the unconstrained CMIP6 distribution for Europe indicating that confidence in the 

upper end of the distribution is lower.  

As more and more CMIP6 models become available, results from these assessments are 

expected to feed into the next WP2 deliverable, D2.3. Planed future work includes comparing 

the effect of diagnostics between CMIP5 and CMIP6 as well as an analysis of diagnostics with 

most predictive skill in different regions and seasons.  
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4.2. Application of detection and attribution methods to derive constraints  

 

Detection and attribution techniques have been applied to derive constraints from 

observed climate change by UEDIN. A summary of literature and a description of the 

methods can be found in section 2.2 of Brunner et al. (2020), as well as in the method 

description document (section B.3). 

CNRM are also pursuing further observational constraints that could be combined with 

their methods. These include use of idealized single forcing simulations that isolate the 

human impact on past climate by taking into account each external forcing separately 

(natural and anthropogenic aerosols, greenhouse gases, stratospheric ozone, which is at 

the core of the Detection and Attribution approach), but this has not yet arrived at 

information relevant for the European scale. As such, much of their contribution to date 

has focused on other observations and historical simulations, which include the effect of 

all combined external forcings, that have so far shown promise with their method. 

 

4.2.1. Additional information 

The UEDIN methodology is being further developed, beyond that presented in the D2.2 

deliverable. Here we summarize progress to (i) extend this to wintertime precipitation, 

(ii) the challenge of how to account for internal variability, and (iii) the rationale behind 

the choice of separating either the greenhouse gas signal from other forcings or the 

combined anthropogenic signal from the other forcings (which is used in the projections 

Figure 4: Temperature evolution in Europe for 40 CMIP5 models using RCP85 and 13 CMIP6 models using SSP585. 
Shown are the unweighted mean and interquartile (gray) and the weighted mean and interquartile (red) as well as 
an observational estimate based on E-OBS, ERA-Interim, and MERRA2. For more details on the calculation see 
Brunner et al. (2019). 
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in Brunner et al. (2020)), rather than separating the three main drivers of climate (the 

response to natural forcing, the response to greenhouse gases, and the response to other 

anthropogenic forcing). 

i. UEDIN methodology provides constraints on temperature as well as precipitation 

for summer. Focus is switching, now, to wintertime constraints where, for 

precipitation in particular, attention is needed to separate out the NAO role.  The 

ASK contribution is important here, as some publications (e.g. Zhang et al., 2007; 

Polson et al., 2016) indicate larger changes in observed rainfall than simulated by 

the model mean, hence the ASK method that allows fitting the magnitude of 

response to observations even outside the climate model range is very valuable 

here.  

ii. An aspect of the UEDIN methodology that is still under discussion is the how 

projections from this method could usefully be compared with other methods.  

Projected climate will both be a reflection of uncertainty in the projection by the 

climate change signal uncertainty only, which is the target of the ASK method, and 

a reflection of uncertainty due to internal climate variability in the future.   

Currently this discussion is how to include estimates of internal variability so that 

results from the UEDIN ASK methodology can be compared directly with other 

methods.  The challenge is to assess to what extent internal variability is already 

partly or wholly aliased within the results from the other methodologies, already, 

and how to best add it to the overall constraints. 

iii. There are a number of defendable choices that can be made in identifying human 

signal in past climate. Therefore, a challenging subject is the choice of signals to 

fit in the ASK method. The most robust method fits three signals to the 

observations: the response to natural forcing, the response to greenhouse gases, 

and the response to other anthropogenic forcing (see e.g. Stott and 

Kettleborough, 2002). Then, in the future, the constrained response to 

greenhouse gases and other anthropogenic forcing can be combined to a 

constraint (see also Shiogama et al., 2016). However, presently CMIP6 future 

single forcing runs are only slowly becoming available and fitting three signals to 

European changes is too noisy for a useable constraint, as it is even challenging 

on the global scale (Schurer et al., 2018; Tokarska et al., 2019). Hence the two 

approaches chosen (see section 2.2 of Brunner et al. (2020). The first one where 

greenhouse gas responses are separated from the response to all other forcings, 

with the assumption that the combination in models of aerosols, and natural 

forcings is approximately of the right size relative to each other.  This approach 

has been explored further recently in Tokarska et al. (2019) to estimate 

greenhouse gas contributions to ocean and global surface temperature warming, 

with sensitivity tests to using anthropogenic against greenhouse gas only signals, 

supporting the method chosen here. Another assumption is that of linearity, 

which has been found to be approximately appropriate (Gillett et al., 2004) and 

nonlinearity is likely indistinguishable due to high levels of internal climate 
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variability. The second approach is where anthropogenic responses are separated 

from the response of all other forcings, with the assumption that the combination 

of greenhouse gases and aerosols remains approximately the same in the future 

as they did in the past. Whilst this assumption becomes more questionable 

towards the end of this century, it may hold reasonably well in the near term, 10-

40 years, time horizons of EUCP.  Commonalities and differences emerge from 

these two different approaches (see Brunner et al., 2020). 
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4.3. Impacts of the selected constraints on European climate 

 

A large part of the Task 2.1 activity has focused on assessing the value and impact of the 

selected constraints. The presentation of the projections (see Brunner et al., 2020) presents 

both unconstrainted and constrained projections. Differences between these two 

presentations illustrate the impact of constraints that have been selected for each method. 

The experimental design adopted to isolate these impacts is motivated and detailed in section 

3 of Brunner et al., 2020). The design includes common variables, regions, and time periods 

as well as a coordinated processing order, in order to facilitate a clean assessment of the role 

of constraints in the respective methods. Figures 2-6 in Brunner et al. (2020) show the effect 

of constraining compared to the unconstrained distributions and a detailed analysis and 

discussion is given in section 4 and 5.  

 

4.3.1. Additional information 

In addition to the work done to isolate the role of observations in the respective climate 

projection methods, the Met Office have undertaken work to assess the impact of removing 

simulations that are unable to capture climate processes that are thought to be a key driver 

of present-day climate. This screening of simulations based on whether they can replicate 

observed climate processes can be seen as complementary to the probabilistic approaches 

presented in D2.2 but, as we will come on to discuss, insights from this approach can reach 

similar conclusions to the probabilistic estimates.   

This method is based on the assumption that if a model is unable to reproduce the key factors 

important for determining the regional climate, the projections from this model are not 

considered reliable. Each model in the CMIP5 ensemble (where data is available), is firstly 

assessed against these key performance indicators and poor performers eliminated from the 

selection. Several models also share large portions of code and therefore have similar errors 

and projections, Sanderson et al 2015a and 2015b quantifies these similarities. Here we use 

these two papers to identify and remove ‘near-neighbours’ and further reduce the selection.  

This assessment has been carried out previously focusing on processes and performance 

relevant for UK climate specifically (McSweeney et al., 2018).  Here the applicability of this 

sub-selection of models is assessed for the wider European area.  

For a set of UK climate projections created in 2018 (UKCP18) a subset of realizations was 

selected from a larger ensemble using performance criteria to determine the capability of the 

models in representing the main physical processes that determine the climate of the UK.  

The method is described in full in McSweeney et al. (2018), following similar principles to 

McSweeney et al. (2015). 31 CMIP5 models with sufficient data availability were screened for 
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their performance against relevant regional and global performance criteria and near 

neighbours in order to identify a subset of 12 -13 members.  

Firstly, all models are screened qualitatively for significant performance shortcomings at 

global and regional scale that are judged to significantly compromise the usefulness of those 

model projections for regional climate change studies relevant to the UK. The use of global 

information reflects our assumption that global performance provides evidence relating to 

the general plausibility of the physical assumptions built into a climate model, while regional 

analysis indicates the extent to which a combination of remote and local drivers of error might 

compromise credibility specifically for UK applications.  

The regional criteria that the models were assessed against included the climatological 

circulation patterns of the N. Atlantic/European sector, distribution of daily storm track 

latitudes, mean temperature biases, frequencies of daily weather types, blocking frequency 

and the realism of the AMOC. Global criteria included global mean climate variability and drift, 

and SST errors. A summary of the assessment criteria and a qualitative analysis of each 

model’s performance is shown in Table 1. Three models were found to be too unrealistic in 

their representation of key characteristics of the regional climate to provide useful 

projections for the UK. These were IPSL-CM5B-LR (UK affected by a cool bias of 8-9°C and very 

unrealistic summer circulation), FGOALS-g2 (very unrealistic circulation patterns in both 

summer and winter) and MIROC5 (unrealistic summer circulation, lacking westerly flow 

Figure 5: Relative change in JJA average precipitation for the time periods 1995-2014 and 2041-2061. Whiskers show 10th 
and 90th precentiles. 
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direction over UK). A further six models were rejected due to very poor performance across 

multiple regional and/or global criteria. 

Table 1: (taken from McSweeney et al., 2018) shows models excluded for poor performance in red.  From remaining models 
(black and green), 13 were selected (green). The subset of 13 models used (green) is could equally be substituted with 
models indicated in black from the same box.  Here we make use of the subset used in McSweeney et al. 2018 (green) to 
illustrate the impact on wider Europe: ACCESS1-3, bcc-csm1-1, CCSM4, CESM1-BGC, CanESM2, CMCC-CM, CNRM-CM5, EC-
Earth, GFDL-ESM2G, HadGEM2-ES, IPSL-CM5A-MR, MPI-ESM-MR, MRI-CGCM3. 

bcc-csm1-1 
bcc-csm1-1-m 
 

BNU-ESM 
CCSM4 
CESM1-BGC 
CESM1-CAM5 
Nor-ESM1-M 

CanESM2 CMCC-CESM 
CMCC-CM 
CMCC-CMS 

CNRM-CM5 
 

IPSL-CM5A-LR 
IPSL-CM5A-MR 
IPSL-CM5B-LR 

MIROC5 
MIROC-ESM 
MIROC-ESM-
CHEM 

FGOALS-g2 MPI-ESM-LR 
MPI-ESM-MR 

MRI-CGCM3 

EC-EARTH 
 

inmcm4 CSIRO-Mk3-6-0 GFDL-CM3 
GFDL-ESM2G 
GFDL-ESM2M 

ACCESS1-0 
ACCESS1-3 
HadGEM2-CC 
HadGEM2-ES 

 

The remaining models were screened for ‘near-neighbours’ which share significant portions 

of code and are known to generate simulations with similar error and projection 

characteristics. This clustering by model similarity is intended to aid sub-selection of a single 

model from each cluster (or two, where four or more non-rejected models exist within a 

cluster). Some pairs/groups of models within the CMIP5 ensemble are known to share 

significant parts of their code, and therefore also share error and projection characteristics 

(Knutti and Sedláček, 2013; Sanderson, Knutti and Caldwell, 2015a, 2015b). Sanderson, Knutti 

and Caldwell (2015b, 2015a) use a multivariate metric of present-day climatology to quantify 

similarity between pairs of models from the CMIP5 (and CMIP3) ensemble showing clear 

relationships between some groups of models. These groups of ‘near neighbours’ include sets 

of models from particular centres, but also highlighting some groups of models that come 

from different centres but still share significant portions of code, which may not be so easy 

to identify without this type of analysis. Sanderson, Knutti and Caldwell (2015b) extend this 

analysis to future projections, demonstrating that the degree of dependence between models 

in their present-day climatology applies similarly to projection characteristics.  

We would expect that the physical processes important for the UK climate (which McSweeney 

et al., 2018 focused on) to also be relevant for wider European climatic regions that are also 

impact by these processes. Here we assess the potential wider applicability of this method by 

comparing the impact of filtering and sub-selection on the SREX regions used in the EUCP 

projections. 

The sub-selection of CMIP5 ensemble members selected for UKCP18 (hereafter called 

CMIP13) was applied to the EUCP regions to see what effect the criteria used for selection 

would have on the projection range of precipitation and temperature for Europe. The change 

in average near surface temperature was calculated for each model out of 34 in a standard 

CMIP5 ensemble, for the time periods 1995-2014 and 2041-2061. The relative change in the 
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precipitation was also calculated using 32 models, the EC-EARTH and NorESMI-M models 

were not included in this ensemble due to lack of data availability.  

Figure 5 shows the inter-quartile and 10th to 90th percentile range for the CMIP5 ensemble 

and the CMIP13 ensemble for each of the EUCP regions along with the combined regions. The 

projection range is substantially reduced in the inter-quartile range for the CMIP13 ensemble 

compared to the standard CMIP5 ensemble, showing a decrease in the projected 

precipitation. The results for the three separate regions show that this reduction in the 

projected range and decrease in precipitation relative to the standard ensemble occurs in the 

Northern European region. In the Central and Mediterranean regions there is some reduction 

in the range of the 10th and 90th percentile but the inter-quartile range is largely unchanged 

and there is no reduction in the Mediterranean. 

Figure 6 shows the projection range of average near surface temperature change for the 

standard CMIP5 ensemble and CMIP13. The main result of the constrained ensemble is to 

substantially reduce the projected temperature in the inter-quartile range for the Northern 

European region. The reduction for the Central and Mediterranean regions is not large and 

there is only a small decrease in the 90th percentile range in the Mediterranean. It can be 

noted that the change in the median projection is not substantially changed by CMIP13 for 

any of the results.  

Figure 6: Change in JJA average near surface temperature for the time periods 1995-2014 and 2041. Whiskers show 10th 
and 90th percentiles. 
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Processes, such as Atlantic circulation, North Atlantic storm tracks, and the AMOC impact the 

UK and Northern parts of the European climate but are less critical factors in determining 

more central areas and the Mediterranean. The results show that a sub-selection of the 

ensemble has the effect of constraining regional projections of climate parameters provided 

the appropriate climate processes are selected to assess the models for a given region. These 

results suggest that the existing assessment of poor physical drivers (McSweeney et al., 2018) 

has wider applicability to Northern Europe, but different physical drivers need to be assessed 

for the Central European and Mediterranean regions. This lack of constraints in Central 

Europe and the Mediterranean motivate the need to repeat this form of analysis with a focus 

on key climate mechanisms in these regions. Further work will involve identifying what these 

physical drivers are for Central Europe and the Mediterranean and an assessment of how well 

these are represented in the CMIP6 ensemble.  

Perhaps the most surprising outcome from this approach is that the CMIP13 constrained 

range down weights the warmer and wetter end of the climate projection range, particularly 

in Northern Europe. This is similar to the effect of observational weighting (see D2.2) in the 

formal probabilistic approaches, despite starting from very different premises, observations 

and methodologies. Further work is needed to fully understand this, but it does lend 

supporting evidence to the probabilistic approaches suggesting that both poor model 

screening and probabilistic approaches are down weighting models due to poor underlying 

processes. 

 

4.4. Provision of information for task 2.2 

All participating groups have made good progress in implementing their observations 

within climate projection frameworks produced within Task 2.2. For most groups, this 

process has largely been completed. CNRM are involved in a more ambitious assessment 

of potential observations (see section 4.1.2) and we expect this to further influence the 

implementation by Task 2.2, beyond the timing of this deliverable.   
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Table 2: Table of qualitative performance flags: Red - not fit to provide useful projections, Orange - significant bias/error, Yellow - relatively poor performance,  Grey - no data (modified from 
McSweeney et al.,2018) 

 Regional Criteria Global Criteria 

 NE Atlantic 
Weather 
Types  

Annual mean 
blocking 
frequency: 
IPCC 

Mean DJF 
circulation  

Mean JJA 
circulation 
 

 Mean 
temp 
bias  

Atlantic 
SST bias 

AMOC   Storm Track   Global 
temperature 
variability/ drift 

Remote  SST 
biases  

High latitude temperature 
variability  

bcc-csm1-1            

bcc-csm1-1-m            

BNU-ESM            

CanESM2            

CESM1-BGC            

CMCC-CESM            

CMCC-CM            

CMCC-CMS            

CNRM-CM5            

ACCESS1-0            

ACCESS1-3            

CSIRO-Mk3-6-0          (CT)  

EC-EARTH            

inmcm4          (CT &SO)  

IPSL-CM5A-LR            

IPSL-CM5A-MR            

IPSL-CM5B-LR            

FGOALS-g2            

MIROC5            

MIROC-ESM            

MIROC-ESM-CHEM            

HadGEM2-CC            

HadGEM2-ES            

MPI-ESM-LR            

MPI-ESM-MR            

MRI-CGCM3            

CCSM4            

Nor-ESM1-M            

GFDL-CM3            

GFDL-ESM2G            

GFDL-ESM2M            

CESM1-CAM5            
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5. Lessons Learnt, links built and challenges faced 
For the main discussion see corresponding section in Deliverable 2.2. We will only duplicate 

discussion on such lesson learned, here, as it relates to the motivation for merging the deliverables 

from the two tasks (Task 2.1 and Task 2.2) and address the situation at KNMI which directly affecting 

Task 2.1.  

The original proposal had the expectation that the activities focused on identifying useful 

observational constraints could be a distinct and self-contained activity (Task 2.1). Work was 

anticipated to start earlier and then expected to inform the development and production of 

observational constrained estimates of future change within particular methodologies (in Task 2.2). 

However, we quickly found that these two activities are much more closely coupled than we had 

anticipated at the proposal stage. Particularly as research moved beyond questions of whether 

particular model biases were correlated with the range of future changes, we found that assessment 

of the impact of particular observations required the observations to be implemented within a 

particular methodology.  

As a consequence, we have combined much of the Task 2.1 analysis into an extended D2.2 

deliverable. We have also learnt lessons about the limits of how transferable insights are on 

observational constraints between methods. Philosophical and practical choices made by individual 

projection methodologies often closely tied insights of the value of particular observations to that 

methodology. For example, the detection and attribution methodology, adopted by UEDIN, relies 

on climate simulations which also had parallel single forcing historical simulations to estimate the 

human fingerprint in observed climate. Insights from the scaling parameters in that methodology 

(see section B.3 in the method description document) are not directly applicable to other methods. 

Instead much of the focus has been on quantifying and understanding where different sets of 

methodologies and observational constrains contribute to robust impacts on projected changes. 

The choice of observational constraints has been shown to often be tied intrinsically to the 

methodologies employed. The valuable outcome, therefore, has not been two distinct assessments 

(firstly on the most useful observational constraints and secondly on their implementation) but 

rather the comparison of methods and their observational constraints in terms of their combined 

impact on future projected changes. This is reflected in the merged nature of the deliverable, D2.2. 

KNMI originally planned to contribute to Task 2.1 with a method assessing the credibility of the 

summertime temperature response in the Mediterranean area from present-day climate variability, 

in relation to the strong soil drying, cloud and precipitation feedbacks occurring in climate models. 

During the reporting period, however, this work has been put on hold due to long-term illness of 

the person responsible, and no replacement could be found at KNMI. The delay of this work has 

only small consequences for the overall WP2 progress as the other methods also deal with the same 

problem, yet with different approaches. Instead, within WP2, KNMI targeted their efforts on Task 

2.2, with a more elaborate analysis of internal variability in the context of the PDF/UQs provided. In 

addition, work on building dry summer scenario within Task 2.3 has been progressed. Also, KNMI 

has built strong links with the eScience centre to port part of the KNMI scenario procedure to a 

common analysis platform. 
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