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1. Executive Summary 
 
The project partners in Tasks 2.1 and 2.2. of EUCP WP2 have contributed towards an evaluation of use of 
observations to reduce uncertainty in future climate projections and an intercomparison of several 
approaches to quantifying uncertainty in future projections out to 40 years ahead.  This forms the basis of a 
scientific paper (Supplement A) which constitutes the core of the extended deliverable 2.2.  This deliverable 
document comprises: (i) this short report providing some context for the paper in terms of the wider project 
and it objectives, (ii) the draft paper (supplement A) and (ii) a more detailed description of each method 
(Supplement B).   
 
This piece of work represents the contributions of both tasks 2.1 and tasks 2.2, which, in practice, are 
intrinsically linked and not suited to assessing separately.  For this reason, the partners in tasks 2.1 and 
2.2 have submitted this extended deliverable 2.2.  
 
The paper is the first example of a direct multi-method comparison of a wide range of methods based on a 
common set of regions, variables, time periods and seasons.  A number of the results that emerge from this 
analysis we expect to inform the upcoming IPCC sixth assessment report.  The intercomparison indicates that 
the multi-model methods consistently project a median warming of 2-3 degrees by the 2050s for the 
combined European region, irrespective of the observational constraints and the projection methodology 
employed.  This is an encouraging result, and points towards a level of increased confidence that the various 
methodologies are downweighting poor models due to common underlying biases.  
A second headline message is that the different methods do vary much more significantly in the uncertainty 
ranges around those median temperature projections. This result has the most important implications for 
ǳǎŜǊǎ ƻŦ ŎƭƛƳŀǘŜ ǇǊƻƧŜŎǘƛƻƴǎ ǿƘƻ ŀǊŜ ƳƻǊŜ ΨǊƛǎƪ ŀǾŜǊǎŜΩ ŀƴŘ ƴŜŜŘ ǘƻ ƪƴƻǿ ǿƘŀǘ ǘƘŜ ǳǇǇŜǊ ŜƴŘ ƻŦ ǘƘŜ range 
of plausible projections might be because some methods will generate more conservative estimates than 
others.  For precipitation,  we see some consensus on decreases in mean rainfall over Central and 
Mediterranean Europe. However, there remains a large range in magnitudes of that change across the 
methods, such that the spread of median estimates remains large.  
 
This is an important piece of work because it allows us to (a) establish how different the uncertainty estimates 
might be from the different methods, and thus, assess how robust the messages to users about future climate 
uncertainty might be, and (b) explain the differences between the methods; such as the different 
observational constraints applied, the inherent assumptions made within each method, and the extent to 
which they account for a wide range of contributing uncertainties.   
 
This information about the source of the uncertainty estimates will help us to make informed decisions about 
which methods might be most appropriate in different contexts, and to provide relevant guidance to users.  
This underpinning information will, importantly,  help to shape the outputs of Task 2.2 and deliverable 2.3 
όΨtǊƻŘǳŎǘƛƻƴ ƻŦ ¦vκt5CǎΩύΦ   For example, the workpackage will have to consider whether  to recommend 
ƻƴŜ ƻǊ ǘǿƻ ΨƳƻǎǘ ǎǳƛǘŀōƭŜΩ ƳŜǘƘƻŘǎ or a synthesis of methods. Further planned work will include exploring 
whether applying a ŎƻƳƳƻƴ ǾŜǊƛŦƛŎŀǘƛƻƴ ƳŜǘƘƻŘ ŎƻǳƭŘ ǇǊƻǾƛŘŜ ǎƻƳŜ ƻōƧŜŎǘƛǾŜ ƳŜŀǎǳǊŜ ƻŦ ƳŜǘƘƻŘ ΨǎƪƛƭƭΩ ǘƻ 
help to inform these decisions. Future work being planned under EUCP will also align with the decision maker 
community to consider how the information in multi-method projections might be used and interpreted in 
some real world case studies. 
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2. Project Objectives 
WITH THIS DELIVERABLE, EUCP HAS CONTRIBUTED TO THE ACHIEVEMENT OF THE FOLLOWING OBJECTIVES (DESCRIPTION 

OF ACTION, SECTION 1.1): 
 

No. Objective Yes No 

1 
Develop an ensembles climate prediction system based on 
high-resolution climate models for the European region 
for the near-term (~1-40 years) 

  x 

2 
Use the climate prediction system to produce consistent, 
authoritative and actionable climate information 

x   

3 
Demonstrate the value of this climate prediction system 
through high impact extreme weather events in the near 
past and near future 

  x 

4 
Develop, and publish, methodologies, good practice and 
ƎǳƛŘŀƴŎŜ ŦƻǊ ǇǊƻŘǳŎƛƴƎ ŀƴŘ ǳǎƛƴƎ 9¦/tΩǎ ŀǳǘƘƻǊƛǘŀǘƛǾŜ 
climate predictions for 1-40 year timescales x   

 

 

3. Detailed Report  
 
 
3.1 Quantifying uncertainty in projections of future European climate: a multi-model multi-method 
approach. 
 
The project partners in tasks 2.1 and 2.2. have contributed towards a joint comparison of multiple 
approaches to quantifying uncertainty in future projections out to 40 years ahead. This comparison forms 
the basis of a scientific paper which, in turn, forms the core of Deliverables 2.1 and 2.2.  
 
The paper is the first example of a direct multi-method comparison of a wide range of methods based on a 
common set of regions, variables, time periods and seasons.   This is an important piece of work because it 
allows us to (a) establish how different the uncertainty estimates might be from the different methods, and 
thus, assess how robust the messages to users about future climate uncertainty might be and (b) explain and 
discuss fundamental differences between the methods; such as the different observational constraints 
applied, the inherent assumptions made within each method, and the extent to which they account for a 
wide range of contributing uncertainties. This allows us to make informed decisions about which methods 
might be most appropriate in different contexts, and to provide relevant guidance to users.   
 
The core results are presented within a scientific journal paper that we intend to submit to Environmental 
Research Letters (or a journal of equivalent impact level) in ahead of the IPCC deadline (December 2019).  
Delivering these results as part of a scientific publication aids the visibility of our results within the wider 
community working on European projections, and demonstrates European leadership in developing and 
deploying multiple approaches for those working in other parts of the world.  A number of the results that 
emerge from this analysis we expect to inform the upcoming IPCC assessment report. 
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The paper explores several diverse methods for quantifying uncertainties in future climate.  Six methods 
explore methods for quantifying uncertainties in future climate, of which five methods use the range of multi-
model projections and one is based on calibration of a single model ensemble.  A further two use large single 
model ensembles to quantify the spread due to internal variability alone, providing contextual information 
about the proportion of uncertainty in future changes that relates to internal varaibility rather than 
uncertainty in climate signal.  All methods are applied (where scientifically feasible) to summer (June-July-
August) average temperature and precipitation, under RCP8.5, for eight common domains at different spatial 
scales ς the three large IPCC SREX domains covering Northern Europe, Central Europe and the 
Mediterannean, a large European region combining those three regions, and ŦƻǳǊ ǎƳŀƭƭŜǊ ΨƎǊƛŘ-ǇƻƛƴǘΩ ǎŎŀƭŜ  
domains.  
 
The intercomparison indicates that the multi-model methods consistently indicate a median projection of 2-
3 degrees by the 2050s for the combined European region, irrespective of the observational constraints and 
the projection methodology employed.  This is an encouraging result, and points towards a level of increased 
confidence that the various methodologies are downweighting poor models due to common underlying 
biases.  A second headline message is that the different methods imply larger spread in the inferred ranges 
around those median temperature projections.  The widest uncertainty ranges stem from the UKCP bayesian 
approach due to its additional sampling of carbon cycle uncertainty drawn from perturbed parameter 
experiments over other methods. This result has the most important implications for users of climate 
ǇǊƻƧŜŎǘƛƻƴǎ ǿƘƻ ŀǊŜ ƳƻǊŜ ΨǊƛǎƪ ŀǾŜǊǎŜΩ ŀƴŘ ƴŜŜŘ ǘƻ ƪƴƻǿ ǿƘŀǘ ǘƘŜ ǳǇǇŜǊ ŜƴŘ ƻŦ ǘƘŜ ǊŀƴƎŜ ƻŦ ǇƭŀǳǎƛōƭŜ 
projections might be because some methods will generate more conservative estimates than others.   
 
For precipitation,  we see some consensus on decreases in mean rainfall over Central and Mediterannean 
Europe. However, there remains a large range in magnitudes of that change across the methods, such that 
the spread of median estimates remains large.  Further work is required to understand how the fundamental 
differences between these methods drive such different projection ranges.  It is less clear at this stage which 
of the precipitation projection products would be suitable for release as projection products. 
 
This multi-method comparison provides an important evaluation of methods that will help to inform the later 
tasks in Work Package 2.   The next steps for WP2 partners are to extend their analysis to include additional 
timeperiods, season and variables, and look at case studies which illustrate greater role of internal variability 
(e.g. nearer time frames, smaller spatial scales).  With respect to the additional variables we will look towards 
quantifying uncertainty in more user relevant metrics, such as common indices of extremes.  The work 
package partners also plan to explore whether a common verification method could provide some objective 
ƳŜŀǎǳǊŜ ƻŦ ƳŜǘƘƻŘ ΨǎƪƛƭƭΩΦ ¢Ƙƛǎ ŎƻǳƭŘ Ǉƻǎǎƛōƭȅ ǳǎŜ /aLtс ƳƻŘŜƭǎ ǘƻ ǇǊƻǾƛŘŜ ŀƴ Ψƻǳǘ ƻŦ ǎŀƳǇƭŜΩ ŎǊƻǎǎ 
validation. Further, the work package partners will consider how these methods might be usefully applied to 
outermost regions of the EU. 
 
Planned future work under EUCP will also align with the decision maker community to consider how the 
information in multi-method projections might be used and interpreted in some real world case studies. It is 
clear from the multi-method comparison that that the methods differ in a number of ways beyond the 
quantitative comparison of the resulting projections, such as their different underpinning assumptions, levels 
of sophistication and different characteristics of the outputs such as their spatial and physical coherency. As 
we look towards the next deliverable under Task 2.2 (Deliverable 2.3) we plan to confront users with these 
methods, in order to improve our understanding of the implications and relative importance of these 
differences for those working with the projections. 
 
 
 
3.2 Detailed descriptions of methods to produce UQs/PDFs 
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The methods applied by the WP2 partners in the intercomparison activity are described in more detail than 
the scientific paper allows in the additional appendices to this document. See Supplement B for these 
detailed descriptions of the methods.   
 
 
3.3 Published peer reviewed papers  
 
.ǊǳƴƴŜǊΣ [Σ wǳǘƘ [ƻǊŜƴȊΣ aŀǊƛǳǎ ½ǳƳǿŀƭŘΣ ŀƴŘ wŜǘƻ Yƴǳǘǘƛ όнлмфύΦ ΨΨvǳŀƴǘƛŦȅƛƴƎ ǳƴŎŜǊǘŀƛƴǘȅ ƛƴ 9ǳǊƻǇŜŀƴ 

climate projections using combined performance-ƛƴŘŜǇŜƴŘŜƴŎŜ ǿŜƛƎƘǘƛƴƎΩΩ Environ. Res. Lett. DOI: 
10.1088/1748-9326/ab492f 

 
Brunner, Lukas., Carol McSweeney; Andrew P. Ballinger; Daniel J. Befort; Marianna Benassi;  

Ben Booth; Erika Coppola; Hylke de Vries; Glen Harris; Gabriele C. Hegerl Reto Knutti; Geert 
Lenderink; Jason Lowe; Rita Nogherotto; /ƘǊƛǎ hΩwŜƛƭƭȅ; Saïd Qasmi; Aurélien Ribes; Paolo Stocchi; 
Sabine Undorf (2020) Comparing Methods to Constrain Future European Climate Projections 
Using a Consistent Framework. Journal of Climate 33(20):8671-8672. https://doi.org/10.1175/JCLI-
D-19-0953.1 

 
 
3.4 Papers in preparation related to this work 

 
hΩwŜƛƭƭȅ Ŝǘ ŀƭΦ όin prep.) Calibrating large ensemble projections using observational data.   

 
Ribes A., S. Qasmi; N. Gillett (In press) Making climate projections conditional on historical observations. 

Science Advances. 
 
Harris, G.R., J.M.Murphy, D.M.H.Sexton. B.B.B.Booth (in preparation.)  Probabilistic projections for regional 

climate change accounting for Earth System modelling uncertainty. 
 
De Vries, H. and Lenderink, G. (in prep.) Methods for estimating internal variability at different time scales in 

climate model ensembles. 
 
 
3.5 Summary of progress towards objectives 
 
This work represents significant progress towards two of the projects high-level objectives. 
 
2. Use the climate prediction system to produce consistent, authoritative and actionable climate information 
 
This comparison of methods addresses some key issues surrounding the question of how a climate prediction 
system could best provide climate information that is consistent, authoritative and actionable.  The diversity 
of uncertainty quantification methods currently available means that different products provided could offer 
inconsistent information to users on the upper and lower ranges of plausible climate change in Europe under 
a given emissions scenario.  It therefore represents a significant challenge to the work package to reconcile 
those different approaches and the differing results in order to ensure that an EUCP product captures the 
strengths of the different methods without compromising the consistency of the information.  The results 
from this intercomparison work pave the way for exploring two important avenues.  The first is to explore 
whether it is feasible to synthesize more consistent information from these multiple methods, using the 
information about strengths and weaknesses and the different results from each method.   ! ΨŎƻƴǎŜƴǎǳǎΩ 

javascript:;
https://doi.org/10.1175/JCLI-D-19-0953.1
https://doi.org/10.1175/JCLI-D-19-0953.1
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product might, for example,  use the spread from multiple results, or might consist of a new method which 
draws on the strongest components of multiple methods. 
 
The second is to improve the transparency of these methods by exposing differences between methods and 
the differences in result in order to improve the guidance on which datasets might be most appropriate in 
different user cases.   
 
 
4. 5ŜǾŜƭƻǇΣ ŀƴŘ ǇǳōƭƛǎƘΣ ƳŜǘƘƻŘƻƭƻƎƛŜǎΣ ƎƻƻŘ ǇǊŀŎǘƛŎŜ ŀƴŘ ƎǳƛŘŀƴŎŜ ŦƻǊ ǇǊƻŘǳŎƛƴƎ ŀƴŘ ǳǎƛƴƎ 9¦/tΩǎ 
authoritative climate predictions for 1-40 year timescales 
 
This piece of work represents an important basis for providing advice on good practice for producing and 
using probabilistic climate projections.  The intercomparison will provide the evidence base for (a) the 
selection of methods, or synthesis products disseminated in EUCP in WP2 Task 2.3, as well as (b) forming 
the basis for good guidance materials by exposing the differences between different methods and their 
implications for different users. 
 
 

4. Lessons Learnt and links Built  
 
WP2 have encountered challenges as well and positive experiences in these early stages of EUCP. 
 

- The intercomparison study in task 2.2 has proved to be a useful focus for the workpackage and 

has drawn together the collective understanding of these diverse methods and facilitated really 

ǎǘǊƻƴƎ ŜƴƎŀƎŜƳŜƴǘ ƛƴ ǘƘŜ ǿƻǊƪ ǇŀŎƪŀƎŜΦ  ¢Ƙƛǎ ƛǎ ŀ ǊŜŀƭƭȅ ǇƻǎƛǘƛǾŜ ΨƭŜǎǎƻƴΩ ŦǊƻƳ ǘƘŜ ǿƻǊƪ 

undertaken so far. 

- CMIP6 data have not been available as early as was originally anticipated.  While a small number 

modelling centres had already populated CMIP6 by early 2019, the UQ methods required a 

projections simulations from a significant number of models to be available much sooner than 

they have been.  In the absence of this a substantive CMIP6 ensemble, the work package has 

been able to press forward with the intercomparison study to evaluate the different methods 

using CMIP5.  Some groups have been able to test some methodology on an early subset of 

CMIP6, and several groups plan to extend their work to include CMIP6 within Task 2.3.   Given 

that WP3 simulations are based on CMIP5-generation modelling, working with CMIP5 data in 

this early stage does have the benefit of bridging more directly to WP3. 

- !ƴ ƛƳǇƻǊǘŀƴǘ ΨƭŜǎǎƻƴ ƭŜŀǊƴŜŘΩ ŜŀǊƭȅ ƛƴ ǘƘƛǎ ǿƻǊƪǇŀŎƪŀƎŜ is that the treatment of observational 

constraints and uncertainty quantification are inherently linked to one another.   The original 

proposal had the expectation that the activities focused on identifying useful observational 

constraints could be a distinct and self-contained activity (Task 2.1).  In practice, two main 

factors meant that assessment of observational constraints were intrinsically linked to their 

implementation within the climate projection methodologies.  Firstly, any quantitative 

assessment of the impact of observations needed the implementation to compare projections 

with and without the selected observations.  Secondly, many of the insights into the value of 

selected observations proved to be method specific, due to philosophical and practical choices 

made by individual projection methodologies.  The valuable outcome, therefore, has not been 

two distinct assessments (firstly on the most useful observational constraints and secondly on 
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their implementation) but rather the comparison of methods and their observational 

constraints in terms of their combined impact on future projected changes.  This is reflected in 

the merged nature of this deliverable. 

 
There are number of areas where WP2 has begun to build strong links with other work packages. 
 

- WP2 has engaged with WP3 on their selection of boundary conditions for their convective permitting 

regional climate modelling.  In practice, pressures from short timescales to get simulations going, 

limited availability of global climate model boundary conditions in CMIP5, and workflows closely tied 

to institutional modelling capability meant that many of these decisions were made on pragmatic 

grounds rather than designs to optimally sample the range of projected future changes.   WP2 was 

represented at the initial WP3 workshop where we provided context on which global climate models 

were likely to be screened out as less plausible. Longer term, WP2 will look to demonstrate methods 

to sub-select global driving data that could inform selection of boundary data for future regional 

modelling activities.   

 

- A number of areas of discussion have developed around the role of WP2 in providing the broader 

uncertainty context for small downscaled ensemble subsets in WP3.  This also has relevance for Task 

5.5 in WP5, where various activities will explore cases where projection information might be used 

from different sources and the user may have to make choices, or use a combination of pieces of 

data.    WP5 also deals with the exploration of uncertainty quantification methodologies in the 

context of  merging intialised and un-initialised runs.  The Callibration method (CALL) developed by 

partners at the University of Oxford jointly under WP2 and WP5 is designed to address some of the 

bias correction issues that need to be addressed in order to offer a merged product. A joint Work 

Package 2 and 5 workshop will be held on this topic in June 2020. 

 

- Now that we have produced our initial WP2 climate projections initial conversations have started 

with uses of climate projection data within WP4.   Peter Greve (IIASA) joined us for our WP2 

workshop in SMHI in Sweden (Oct. 2019) to discuss how we can link this information through to their 

impact modelling, both at river and water modelling at IIASA and more widely in WP4.  This exposed 

some interesting challenges.  For example, the water modelling requires spatially and temporally 

coherent realizations to drive their impact modelling.  This is not necessarily consistent with the 

projection probabilities described in this deliverable.  We are starting to think of ways to bridge this 

gap, whether this is using probabilistic projections to provide context to WP4 impact modelling; 

employing weather generators to translate the probabilities into realizations; or identifying the 

subset of methodologies that can provide weights on individual realizations.   
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B.1 Climate model weighting by independence and performance (ClimWIP) - 
ETHZ  
 
Author: Lukas Brunner and Ruth Lorenz 
 
Short summary of method 
A weighting method based on model performance and independence is used to better quantity the 
uncertainty and increase the skill of climate projections in Europe. The weights for each model are 
based on a pool of diagnostics which represent the its distance several observational data sets on 
the one hand and the distances to all other models on the other hand. This approach can be easily 
be applied to different of target variables, time periods, and geographical regions, depending on the 
availability of observations to inform the weighting.  
 
Key References 
 
Brunner et al., 2019: This paper includes a detailed method description and presents results based 

on the common WP2 settings [EUCP WP2 publication] 
 
Lorenz et al., 2018: This paper investigates the effect of the weighting method applied to maximum 

temperature in North America and describes the selection of diagnostics to inform the 
weighting. 

Knutti et al., 2017: This paper looks into the effect of the weighting method using the case of Arctic 
sea ice extent.  

 
Data 
The weighting is applied to all available CMIP5 (Taylor, Stouffer and Meehl, 2012) models and initial-
condition members. We use monthly data regridded to a regular 2.5°×2.5° grid and combine 
historical runs and the representative concentration pathway 8.5 (RCP8.5) (van Vuuren et al., 2011) 
in the period 1995-2014 to initialize our weighting approach and RCP8.5 from 2041-2060 as target 
period. 
As reference we use reanalyses data from the European Centre for Medium-Range Weather 
CƻǊŜŎŀǎǘǎΩ ό9/a²Cύ 9w!-Interim (Dee et al., 2011) and from the National Aeronautics and Space 
Administrations (NASA) MERRA2 (Molod et al., 2015) as well as a data set based purely on 
observations, which is combined from multiple sources for different variables (E-OBS, Cornes et al. 
(2018); CERES, (Wielicki B. A. et al., 1996)) 
 
Details of method 
The method is based on a combination of historical model performance and model independence. 
To inform the performance weighting we use six diagnostics, which can be based on any CMIP5 
output variable for which observations are available. The calculation of a diagnostic follows a 
straight-forward approach: (i) variable, region, time period, and season are selected, (ii) the 
climatology (CLIM) or standard deviation (STD) is calculated, (iii) the point-to-point difference 
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between model and the observational spread is calculated, and finally (iv) the area weighted root 
mean squared error is calculated over the selected region.  
 
The independence weighting is informed by diagnostics which can be based on any CMIP5 output 
variable which is available for all models. In practice, we use the same diagnostics as for the 
performance weighting, with the only difference that the point-to-point difference (step (iii) above) 
is calculated between each model pair.  
The weights are calculated following an approach used by Lorenz et al. (2018),which is in turn based 
on the work by Knutti et al. (2017), Sanderson, Knutti and Caldwell (2015a), and Sanderson, Knutti 
and Caldwell (2015b). Each weight ύ is a combination of the observational distance parameter Ὀ 
(informing the performance weighting) and the model distance parameter Ὓ  (informing the 

independence weighting): 

ύ
Ὡ

ρ В Ὡ

 

with the total number of model runs M and the shape parameters „ and „. For details on the 
estimation of these shape parameters see Lorenz et al. (2018) and Brunner et al. (2019).  
 
Observational constraints applied 
When discussed in the context of observational constraints model weighting schemes take a 
somewhat special role. They use multiple observation-based variables, sometimes termed 
diagnostics to inform the weights. Ideally, informing diagnostisc should show a strong relationship 
between the simulated historical values and the target which one tried to predict. In a classical 
emergent constraints setting adding additional constraints usually leads to a strong sub-selection of 
models and even none of the models being consistent with the applied constraints any more. In 
contrast, weighting approaches tend to have an ideal number of diagnostics to inform the 
weighting. Using less diagnostics leads to very strong weighting and is therefore prone to 
overconfidence while using many diagnostics converges towards equal weighting. (Lorenz et al., 
2018). A discussion of the differences between emergent constraints and model weighting can be 
found, for example, in Alex Hall et al., (2019).  
Sanderson, Wehner and Knutti, (2017) use the seasonal climatologies of 12 variables to inform their 
weights. These variables include basic ones such as temperature, precipitation, radiation fluxes, and 
pressure as well as more specific ones, such as coldest and warmest days and nights (see Sanderson, 
Wehner and Knutti (2017), Table 1 for a full overview). The weights are then applied to projections 
of temperature and precipitation in North America. Lorenz et al. (2018) use a very similar approach 
and apply model weighting to maximum temperature in North America as well as a sub-region. From 
a pool of over 20 possible diagnostics (including climatologies, variances, and trends) they select the 
most informative nine based on correlations between historical values and change in the target 
variable. Among them are maximum temperature (climatology, variance, and trend), precipitation 
(climatology and variance), and surface humidity (variance) (see Lorenz et al. (2018), Table 1 for a 
full overview).  
 
More specifically, Knutti et al. (2017) focus on September sea ice extend in the Arctic. Four 
diagnostics are selected based on expert knowledge: the September sea ice extend climatology and 
trend as well as the climatology and variability in the surface air temperature.  
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Here, ETHZ applies weights to constrain projections of summer and winter temperature and 
precipitation in different European regions as detailed in Brunner et al. (2019). Six diagnostics based 
are selected: temperature (climatology), precipitation (climatology), shortwave downward 
radiation (climatology), shortwave upward radiation (climatology and variance), longwave 
downward radiation (variance).  
 
Key assumptions 
¶ Future model performance can be inferred from historical model performance (based on a range of 

diagnostics) (e.g., Knutti (2008)). 

¶ The dependence of models between each other can be estimated by their output (e.g., Knutti, 
Masson and Gettelman (2013)). 

¶ Selection of the ideal diagnostics to inform the weighting as well as a reasonable number of 
diagnostics to use (e.g., Lorenz et al. (2018)). 

¶ How to translate observation-model distance into model performance (performance shape 
parameter, how strongly do we weight for model performance) and how to translate the model-
model distance into model independence (i.e., when are two model independent; independence 
shape parameter) (Knutti et al., 2017). 

 
Limitations 
¶ Availability of gridded observations to produce diagnostics relevant for the target variable. 

¶ Sufficient domain to average over and avoid the effect of natural variability on the weights. 

¶ The observational spread (i.e., from different sources) needs to be smaller than the model spread. 

¶ No extrapolation beyond original model range possible. 
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B.2  The Reliability Ensemble Averaging method (REA) - ICTP 
 
Authors: Sticchi Paolo, Nogherotto Rita, Erika Coppola, and Filippo Giorgi 
 
Short summary of the method 
The weighting method iǎ ōŀǎŜŘ ƻƴ ǘǿƻ άǊŜƭƛŀōƛƭƛǘȅέ ŎǊƛǘŜǊƛŀΥ ǘƘŜ ƳƻŘŜƭ ǇŜǊŦƻǊƳŀƴŎŜ ŎǊƛǘŜǊƛƻƴ ƛƴ 
reproducing present day-climate and the model convergence criterion that consider the spread of 
the climate change signal across the models. The philosophy of the REA approach is to minimize the 
contribution of simulations that either perform poorly in the representation of present-day climate 
or are outlier in the ensemble for the future projections, in order to reduce the uncertainty and 
increase the skill of the climate model ensemble in Europe. 
 
Key references 
 
Giorgi, F., and L.O. Mearns, 2002: Calculation of average, uncertainty range and reliability 

ƻŦ ǊŜƎƛƻƴŀƭ ŎƭƛƳŀǘŜ ŎƘŀƴƎŜǎ ŦǊƻƳ !hD/a ǎƛƳǳƭŀǘƛƻƴǎ Ǿƛŀ ǘƘŜ άwŜƭƛŀōƛƭƛǘȅ 9ƴǎŜƳōƭŜ !ǾŜǊŀƎƛƴƎ 
όw9!ύέ ƳŜǘƘƻŘΦ Journal of Climate, 15, 1141-1158. 

Giorgi, F., and L.O. Mearns, 2003: Probability of regional climate change calculated using the 
Reliability Ensemble Averaging (REA) method. Geophysical Research Letters, 30, 1629. 

 
Data 
The weighting is applied to the available CMIP5 (Taylor, Stouffer and Meehl, 2012) models that we 
have in house. The monthly model data are regridded into a regular 2.5°×2.5° grid and we use the  
historical period 1995-2014 has a reference period to calculate the first reliability criteria  and the 
mid of century future time slice period (2041-2060) for the scenario concentration pathway 8.5 
(RCP8.5) (van Vuuren et al., 2011). As observed reference data we used the E-OBS  gridded dataset. 
 
Details of method 
¢ǿƻ ƎŜƴŜǊŀƭ άǊŜƭƛŀōƛƭƛǘȅ ŎǊƛǘŜǊƛŀέ ŀǊŜ ǳǎŜŘ ǘƻ ŀǎǎŜǎǎ ǘƘŜ ǊŜƭƛŀōƛƭƛǘȅ of regional climate change 
ensemble simulations. The first is based on the ability of a climate model to reproduce different 
aspects of present-day climate: the better a model performance is, the higher the reliability of that 
model. We refer to this as tƘŜ άƳƻŘŜƭ ǇŜǊŦƻǊƳŀƴŎŜέ ŎǊƛǘŜǊƛƻƴΦ ¢ƘŜ ǎŜŎƻƴŘ ŎǊƛǘŜǊƛƻƴ ƛǎ ōŀǎŜŘ ƻƴ ǘƘŜ 
convergence of the different model simulations for a given forcing scenario. The greater it is the 
convergence the higher it is the reliability of the signal that is little sensitive to the model 
ŘƛŦŦŜǊŜƴŎŜǎΦ ²Ŝ ǊŜŦŜǊ ǘƻ ǘƘƛǎ ŀǎ ǘƘŜ άƳƻŘŜƭ ŎƻƴǾŜǊƎŜƴŎŜέ ŎǊƛǘŜǊƛƻƴΦ ¢Ƙƛǎ ƳŜǘƘƻŘ ƛǎ ŎŀƭƭŜŘ άǊŜƭƛŀōƛƭƛǘȅ 
ŜƴǎŜƳōƭŜ ŀǾŜǊŀƎƛƴƎέ όw9!ύΦ 
In our REA method, the average change, ῳὝͯ is given by a weighted average of the ensemble 
members, that is: 
  

                                                                 ὃͯῳὝ ῳὝͯ
В

В
 

 
where the operator Ã denotes the REA averaging and Ri is a model reliability factor 
defined as 
 

(1) 
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Ὑ Ὑȟ ὼὙȟ

ϳƳȄƴ

ŀōǎȟ ŀōǎȟ

ϳƳȄƴ

 

 
RB,i is a factor that measures the model reliability as a function of the model bias (BT,i) in simulating 
present-day value of a given variable. The higher the bias is the lower is the model reliability. Here 
the bias is defined as the difference between simulated and observed mean value of the variable 
for the present-day period. RD,i is a factor that measures the model reliability in terms of the 
distance (DT,i) of the change calculated by a given model from the REA ensemble average change. 
The higher is the distance the lower is the model reliability. Therefore, the distance is a measure of 
the degree of convergence of a given model toward  the average of the others. To summarize RB,i is 
a measure of the model performance criterion while RD,i is a measure of the model convergence 
criterion. 
 
The distance DT,i is calculated using an iterative procedure. A first guess of DT,i is the distance of each 
ɲTi from the ensemble average change  that is, [DT,i]1 Ґ ώɲTi ς ῳὝȅ] with  
 

ῳὝȅ
ρ

ὔ
ῳὝ 

 
 
The first guess values are then used in eq. (1) and eq. (2) to obtain a first-order REA average 

change ῳὝͯ , which is then used to recalculate the distance of each individual model as Ὀȟ
ῳὝ ῳὝͯ  and repeat the iteration. Typically, this procedure converges quickly after several 

iterations.  
 
The parameters m and n in eq. (2) can be used to give different weigh to each criterion. For most 
calculations m and n are assumed to be equal to 1, which gives equal weight to both criteria. 
Also, RB and RD are set to 1 when B and D are respectively smaller than . To 
summarize  eq.(2) states that a mƻŘŜƭ ǇǊƻƧŜŎǘƛƻƴ ƛǎ άǊŜƭƛŀōƭŜέ ǿƘŜƴ ōƻǘƘ ƛǘǎ ōƛŀǎ ŀƴŘ ŘƛǎǘŀƴŎŜ ŦǊƻƳ 
the ensemble average are within the natural variability, so that RB = RD = R = 1. As the bias and/or 
distance grow, the reliability of a given model simulation decreases.  
 
The parameter  in eq. (2) is a measure of natural variability in 30-yr average regional temperature 
and precipitation.  
In order to calculate , we consider the time series of observed regionally temperature and 
precipitation for the twentieth century from the E-OBS dataset. We then compute yearly averages 
of the time series after linearly detrending the data (to remove century-scale trends) and 
estimated  as the variance of these 30-yearly averages.  
The concept of reliability factor can be used to estimate the probability of future climate change 
ŦǊƻƳ ǘƘŜ ƳƻŘŜƭ ŜƴǎŜƳōƭŜΦ .ŜŦƻǊŜ ŘƻƛƴƎ ǘƘŀǘΣ ǿŜ ƴƻǘŜ ǘƘŀǘ ǘƘŜ ƭƛƪŜƭƛƘƻƻŘ ǘƘŀǘ ŀ ƎƛǾŜƴ ƳƻŘŜƭπ
simulated change will actually happen is generally not known, since future conditions are not known 
and therefore the model cannot be validated in its ability to predict climate change. Also not known 
is the probability distribution of the simulated changes, since this would require a very large sample 
of model simulations. As a result, some assumptions need to be made concerning the likelihood of 
a model outcome.  

(2) 
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Lƴ ƻǳǊ ƳŜǘƘƻŘΣ ǘƘŜ ƭƛƪŜƭƛƘƻƻŘ ŀǎǎƻŎƛŀǘŜŘ ǿƛǘƘ ŀ ƳƻŘŜƭπǎƛƳǳƭŀǘŜŘ ŎƘŀƴƎŜ όPmi) is proportional to the 
reliability parameter defined in eq. (2). The normalization of this likelihood yields the definition 
 

 
 

In other words we assume that the change simulated by a more reliable model is more likely to 
occur. From equation (3) it follows that, for a given emission scenario, the probability of a climate 
change ŜȄŎŜŜŘƛƴƎ ŀ ŎŜǊǘŀƛƴ ǘƘǊŜǎƘƻƭŘ ɲTth is given by : 
 

 
 
where Pmɲ¢ǘƘ  ƛǎ ǘƘŜ ǇǊƻōŀōƛƭƛǘȅ ƻŦ ǘƘŜ ǘŜƳǇŜǊŀǘǳǊŜ  ŎƘŀƴƎŜ ōŜƛƴƎ ƎǊŜŀǘŜǊ ǘƘŀƴ ǘƘŜ ǘƘǊŜǎƘƻƭŘ ɲTth  in 
the scenario considered.  
 
From the probability of exceedance we computed the Probability Density Function (PDF)  
as the difference between Pmɲ¢ǘƘ ς Pmɲ¢ǘƘ-1 for the 2.5°x2.5° boxes centered on Svealand, 
Dusseldorf, Madrid and Transylvania (Fig. 1-2) and for the three SREX regions (NEU, CEU, MED) + 
the entire European domain (NEU-CEU-MED) (Fig. 3-6).  
The changes are calculated for the period 2041-2060 relative to the 1995-2014 period. 

 
 
Limitations 
 

¶ The applicability of the method is limited by the availability of observations 

¶ The method at the moment doesn't consider multiple observations and the spread of the 
observational dataset. 
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Results 

We show here some preliminary results applying the method using the CMIP5 models reported in 
Table 1. 

Table 1: CMIP5 models used in the REA method calculations. 

BCC-CSM1.1 
BCC-CSM1.1M 
BNU-ESM 
CanESM2 
CMCC-CM 
CMCC-CMS 
CSIRO-ACCESS-1 

CSIRO-ACCESS-3 
CSIRO-MK36 
EC-EARTH 
FIO-ESM 
GFDL-ESM2M 
HadGEM2-ES 
IPSL-CM5A-MR 

 

MIROC-ESM 
MPI-ESM-LR 
MPI-ESM-MR 
NCAR-CCSM4 
NCAR-CESM1-BGCNCAR-CESM1-
CAM5 
NorESM1-M 
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Figure 1: Temperature Change (°C) probability density functions for the four small boxes centered on Dusseldorf, Svealand, Madrid 
and Transylvania for the two seasons (JJA, DJF).  
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Figure 2: Precipitation Change (%) probability density functions for the four small boxes centered on Dusseldorf, Svealand, Madrid 
and Transylvania for the two seasons (JJA, DJF). 
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Figure 3: Temperature Change(°C) probability density functions for the whole European area (NEU-CEU-MED), and for the NEU, 
MED, CEU regions in the JJA season.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 






















































































