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1. Executive Summary

The project partners in Tasks 2.1 and 2PEUCP WP2 have contributed towardsesaluation of use of
observations to reduce uncertainty in future climate projections and irtiercomparison of several
approaches to quantifying uncertainty in future projections out to 40 years ahead fofimisthe basis of a
scientific papeXSupplemat A)whichconstitutesthe core ofthe extendeddeliverable2.2. Thisdeliverable

documentcomprises(i) thisshort report providing some context for the paper@rms of the wider project
and it objectives(ii) the draft paper (supplement A) angli) a more detailed description efach method

(Supplement B)

This piece of work represents tlemntributions of both tasks 2.1and tasks 2.2, whichn practice, are
intrinsicallylinked andnot suited to assessing separately. For this reasonptréners intasks2.1 and
2.2 havesubmittedthis extended deliverable 2.2

The paper is the first example of a direct muttiethod comparison of a wide range of methods based on a
common set of regions, variables, timeriods and seasonsh number of the results that emerge from this
analysis we expect to inform the upcoming IRBB@hassessment reportThe intercomparison indicates that

the multi-model methods consistentlyproject a medianwarming of 2-3 degrees by the 2050s for the
combined European regiorirrespective of the observational constraints and the projection mettogly
employed. This is an encouraging result, and points towards a level of increased confidence that the various
methodologies are downweighting poor models due to common underlying biases.

A second headline message is that the different methdmsar much more sigficantly in the uncertainty

ranges around those medigemperature projections. This result has the mdstportant implications for
dzASNER 2F OfAYIF OGS LINR2SOlA2ya K2 | NB Y2NB rawgeR a1 |
of plausible projections might be because some methods will generate more conservative estimates than
others. For precipitation, we see someconsensus on decases in mean rainfall over Central and
MediterraneanEurope However,there remains a layje range in magnitdes of that change across the
methods, such that thepread of median estimates remains large.

This is an important piece of work because it allows us test@plishhow different the uncertainty estimates
might be from thadifferent methods, and thus, assess how robust the messages to users about future climate
uncertainty might be and (b) explain the differences between the methods; such as the different
observational constraints applied, the inherent assumptions madeinvitach method, and the extent to
which they account for a wide range of contributing uncertainties

This information about the source of the uncertainty estimatéshelpus to make informed decisions about
which methods might be most apppdate indifferent contexts, and to provide relevant guidance to users.

This underpinning information wijlimportantly, help to shape the outputs ofask 2.2and deliverable 2.3

0 Wt NB RdzOU A 2 yForzefampley thet workpiacRagefll have to consider whetheto recommend

2yS 2NJ (g2 WY 2 adrasynizésis bfanktodFuMreripkirthéd avorkvill includeexploring
whetherapplyinga®2 YY2y @GSNAFTFAOI GA2Yy YSUK2R O2dzZ R LINPOARS
help to inform these decisiaFuture work being planned under EUCP will also align with the decision maker
community to consider how the information in muitiethod projections might be used and interpreted in
some real world case studies.

EUCHR776613 Deliverable R.2 4
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2. Project Objectives
WITH THIS DELIVERABEEJCRMAS CONTRIBUTED TO THE ACHIEVEMENT OF THE FOLLOWING QBESCRNESON
OFACTION SECTIONL.1):

No. Objective Yes No

Develop an ensembles climate prediction system base(
1 high-resolution climate models for the European region
for the nearterm (~140 years)

Use the climate prediction system to produce consisten
authoritative and actionable climate information

Demonstrate the value of this climaprediction system
3 through high impact extreme weather events in the nea
past and near future

Develop, and publish, methodologies, good practice an
4 3dzA RF yOS F2NJ LINPRdzOAY 3 |y
climate predictions for #40 year timescales X

3. Detailed Report

3.1 Quantifying uncertainty in projections of future Europeaanlimate: a multtrmodel multi-method
approach.

The project peaners in tasks2.1 and 2.2. have contributed towards joint comparison of multiple
approaches taquantifying uncertaintyin future projections out to 40 years aheathis comparisoforms
the basis of a scientific papevhich, in turn,forms the core obDeliverables 2.1 and 2.2

The paper is the first example @ direct multimethod comparisorof awide range of methods based on a
common set of regions, variables, tirperiods and seasonsThis isan important piece of work because it
allows us to (agstablishhow different the uncertainty estimates might be from the different methpdsd
thus, assess how robust the messages to users about future climate uncentégftlybeand(b) expgainand
discuss fundamentatiifferences between themethods such as the different observational constraints
applied the inherent assumptionamade within each methodand theextent to which they account for a
wide range of contributig uncertainties Thisallows us to make informed decisions about which methods
might be most apprpriate in different contexts, and to providelevant guidance to users.

The core results are presented within a scientific journal paper thaintesd to submitto Environmental
ResearchLetters (or a journal ofequivalent impact levelin ahead of the IPCC deadline (December 2019).
Delivering these results as part of a scientific publication aids thigilitys of our results within the wider
community working on European projections, and demonstrates European leadership in developing and
deploying multiple approaches for those working in other parts of the world. A number of the results that
emerge from this analysis we expect to inform the aiming IPCC assessment report.

EUCK776613 Deliverable R.2 5
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The paper exploreseveraldiverse methods for quantifying uncertainties in future climat8ix methods

explore methods for quantifying uncertaigs in future climate, of which five methods use the rangmatfti-

model projections and one is based on calibration of a single model ensemble. A further two use large single
model ensembles to quantify the spread due to internal variability al@neviding contextual information

about the proportion of uncertaity in future changesthat relates tointernal varaibility rather than
uncertainty in climate signalAll methods are applied (whergientificallyfeasible) tosummer (Junguly
Augustlaverage temperature and precipitatipander RCP8.5r eightcommon domains at different spatial

scales ¢ the three large IPCC SREX domains covering Northern Europe, Central Europe and the
Mediterannean, a larg&uopean region combining those three regions, @@ dzNJ a Y HLI2 fA §NUQW Z N
domains.

Theintercomparison indicates that the muithodel methods consistently indicate a median projection-of 2

3 degrees hy the 2050s for the combined European regicespective of the observational constraints and

the projection methodology employed. This isencouraging result, and points towards a level of increased
confidence that the various methodologies are downweighting poor models due to common underlying
biases. A second headline message is that the different methods imapyierspreadin the infered ranges
around those mediatemperatureprojections. The widest uncertainty ranges stem from the UKCP bayesian
approach de to its additional sampling of carbon cycle uncertainty drawn from perturbed parameter
experimentsover other methods This resul has the most important implications for users of climate
LINEP2SOlA2ya ¢gK2 FFNB Y2NB WNRal FOSNESQ |yR ySSR
projections might be because some methods will generate more conservative estimates than others.

For precipitation, we see some consensus on d&sge in mean rainfall over Central and Meditaraan

Europe. However, there remains a large range in magnitudes of that change across the methods, such that
the spread of median estimates remains large. Furthak is required to understand how the fundamental
differences between these methods drive sutifferent projection rangeslt is less clear at this stagehich

of the precipitationprojection productsvould be suitable for releaseas projection products

This multimethod comparison provides an important evaluation of methods that will help to inform the later

tasks in Work Package ZThe next steps for WP2 partners are to extend their analysis to include additional
timeperiods, season and variables, dadk at case studies which illustrate greater role of intwvariability

(e.g. nearer time frames, smaller spatial scales). With respect to the additional variables we will look towards
guantifying uncertainty in more user relevant metrics, such asmomindices of extremes. The work
package partneralsoplan to explore whether a common verification method could provide some objective
YSIFadz2NBE 2F YSGK2R WalAftftQod ¢KAA O2dzxZ R Ll2aarofe
validation.Further, the work package partners will consider how these methods might be usgbpliyd to

outermost regions of the EU.

Planned future work under EUCP will also align withdbeision maker community to consider how the
information in multimethod proje¢ions might be used and interpreted in some real world case stutliess.
clear from the multimethod comparison that that the methods differ in a number of ways beyond the
guantitative comparison of the resulting projections, such as ttiiffierent underpinning assumptions, levels
of sophistication and different characteristics of the outputs such as their spatial and physical coh&sency.
we look towards the next deliverablender Task 2.2Deliverable 2.3we plan toconfront users withthese
methods, in order to improve our understanding of the implications and relative importance of these
differences for those working with the projections.

3.2 Detailed descriptions of methods to produce UQs/PDFs
EUCK776613 Deliverable R.2 6



I L

European Climate Prediction system

The methods applied by th&/P2 partnes in the intercomparison activity are described in more detail than
the scientific paper allows in the additionappendices to this documentSee Supplement B for these
detailed descriptions of the methods

3.3 Published peer reviewedpapers
NHzy Yy SNE [ X wdziK [2NByTl = b

a
climate projections using combingzrformanceA y R S
10.1088/17489326/ab492f

NA dzd %dzYsél f R | yR wSi
LISy RSy OBnvirégrSRed Kefb®ly 3 Q Q

Brunner, Lukas.Carol McSweeneyAndrew P. BallingerDaniel J. BefortMarianna Benassi
Ben Booth Erika CoppolaHylke de VriesGlen HarrisGabriele C. HegeReto Knutti Geert
Lenderink Jason LowgRita Nogherottg/ K NA & : Bahv@&skpidrdien RibesPaolo Stocchi
Sabine Undor{2020) Comparing Methods to Constrain Future European Climate Projections
Using a Consistent Framewarournal of Climat 33(20):86718672.https://doi.org/10.1175/JCLI
D-19-0953.1

3.4 Papers in preparatiomelated to this work
h QwS A f ih prepalibratingdargé ensemble projections using observational data.

Ribes A., LYasmi; N. Gillettl( pres$ Making climate projections conditional on historical observations.
Science Advances.

Harris,G.R.J.M.Murphy, D.M.H.Sexton. B.B.B.Boathpfeparation) Probabilistic projections for regional
climate change accounting for Earth System modelling uncertainty

De VriesH. and Lenderink, @n prep) Methods for estimating internal variability at different time scales in
climate model ensembles.

3.5 Summary of progess towards objectives
This work represents sigitant progress towardsvo of the projects higHevel objectives.
2. Use theclimate prediction system to produce consistent, authoritative and actionable climate information

This comparison of methodgldresses some késsues surroundinghe question ohow a climate prediction

system could best provide climaiteformation that is consistent, authoritative and actionablEne diversity

of uncertainty quantification methods currently availabteans that different products providezbuld offer
inconsistent information to usersn the upperand lowerrangesof plausibleclimate change in Europe under

a given emissions scenaritt thereforerepresents a significant challemtp the work package toeconcile

those different approaches and thdiffering results in order to ensure that an EUCP proaagitures the

strengths ofthe different methods without compromising theonsistency of the informationThe results

from this intercomparison work pave the way for exploring two important avenud® first is to explore

whether it is feasibleéo synthesize more consistent information from these multiple methadsg the
information about strengths and weaknessasd the different results from each method! wozyaSyad

EUCHR776613 Deliverable R.2 7
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product might, for example, use the spread from multiple results, or might consist of a new method which
draws on the strongest components of multiple methods.

The second is tomprove the transparency of these methods by exposlifigrencesbetween methods and
the differences in result in order tamprove the guidance on which detets might be most appropriate
different user cases.

4.58@0St 21 YR LlzmfAakK: YSGK2R2f23ASax 3I22R  LINI Ol
authoritative climate predictions for-40 year timescales

This piece of work represents an importdoatsis forproviding advice on good practice for producangd
using probabilisticlimate projections. Tdintercomparison will provide the evidence base fa) the
selection of methods, or synthesis produdisseminated in EUCP in WRizk 2.3, as well db) forming
the basis for good guidance materialsdxposing the differences between different methods and their
implications for different users.

4. Lessons Learnt and links Built

WP2 have encountered challengas well and positive experiencasthese early stages &UCP.

- The intercomparison study in task 2.2 has proved to be a useful focus for the workpaakage
has drawn together the collective understanding of these diverse methods and facilitated really
AGNRyYy3 Sy3ar3aSySyid Ay GKS ¢g2N] LI O1F3AS® ¢ KA
undertaken so far.

- CMIP6 data have not been availalblgearlyaswas originally anticipatedWhile a small number
modelling centres had already populated CMIP6 by early 2019, the UQ metkqgdged a
projections simulations from a significant number of mod&de available much sooner than
they have been.In the absence of this a substantive CMIP6 ensemble, the work padiege
been able to press forward witthe intercomparison studyo evaluae the different methods
using CMIP5 Some groups have been able test some methodology on an early subset of
CMIP6 and several groups plan to extend theiork to include CMIP@ithin Task 2.3. Given
that WP3 simulations are based on CMigEneration modelling, working with CMIP5 data in
this early stagaloes have tk benefit of bridging more directly to WP3.

-y AYLRNIFYyGd WwWiSaazy f SliNtgabStReQreabtemDbi®dbsdruhtiotiak A & ¢
constraints and uncertainty quantification are inherently linked to one anothdihe original
proposal had the expectation that the activities focused on identifying useful observational
constraints could be a disict and selcontained activity (Task 2.1). In practice, two main
factors meant that assessment of observational constraints watansicallylinked to their
implementation within the climate projection methodologies. Firstly, any quantitative
assessrant of the impact of observations needed the implementation to compare projections
with and without the selected observations. Secondly, many ofitisgghtsinto the value of
selected observations proved to be method specific, due to philosophical aadtipal choices
made by individual projection methodologies. The valuable outcome, therefore, has not been
two distinct assessments (firstly on the most useful observational constraints and secondly on

EUCK776613 Deliverable R.2 8
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their implementation) but rather the comparison of rnfeds and their observational
constraints in terms of their combined impact on future projected changes. This is reflected in
the merged nature of this deliverable.

There are number of areas where WP2 hagun to buildstronglinks with other work packges.

- WP2 has engaged with WP3 on their selection of boundary conditions for their convective permitting
regional climate modelling. In practice, pressures from short timescales to get simulations going,
limited availability of global climate modebundary conditions in CMIP5, and workflows closely tied
to institutional modelling capability meant that many of these decisions were made on pragmatic
grounds rather than designs to optimally sample the range of projected future changes. WP2 was
represented at the initial WP3 workshop where we provided context on which global climate models
were likely to be screened out as less plausible. Longer term, WP2 will look to demonstrate methods
to subselect global driving data that could inform selectionboindary data for future regional
modelling activities.

- Anumber of areas of discussion have developed around the role of WP2 in providing the broader
uncertainty context for small downscaled ensemble subsets in WHAI3. also has relevance for Task
5.5 in WP5 wherevarious activities will exploreases where projection informatiamight be used
from different sources and the user may have to make choices, or use a combination of pieces of
data. WP5 also deals with the exploration ofcertainty quantificationrmethodologiesin the
context of merging intialised and uimitialised runs. The Callibration method (CALL) develtyed
partners at the University of Oxforidintly under WP2and WPSs designed to address some of the
bias correction issues that need to be addressed in order to offer a merged prédjaint Work
Package 2 and 5 workshop will be held on this topic in June 2020.

- Now that we have produced our initial WP2 climat®jections initial conversations have started
with uses of climate projection data within WP4. Peter Greve (IIASA) joined us for our WP2
workshop in SMHI in Sweden (Oct. 2019) to discuss how we can link this information through to their
impact modelling both at river and water modelling at IASA and more widely in WP4. This exposed
some interesting challenges. For example, the water modelling requires spatially and temporally
coherert realizations to drive their impact modelling. This is not neceafsaonsistent with the
projection probabities described in this deliverable. We are starting to think of ways to bridge this
gap, whether this is using probabilistic projections to provide context to WP4 impact modelling;
employing weather generatorsttranslate the probabilities into readtions; or identifying the
subset of methodologies that can provide weights on individual zz#dins.

EUCK776613 Deliverable R.2 9
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B.1 Climate model weighting by independence and performance (ClimWIP)
ETHZ

Author: LukaBrunner and Ruth Lorenz

Short summary of method

A weighting method based on model performance and independence is used to better quantity the
uncertainty and increase the skill of climate projections in Europe. The weights for each model are
based on a pol of diagnostics which represent the its distance several observational data sets on
the one hand and the distances to all other models on the other hand. This approach can be easily
be applied to different of target variables, time periods, and geogegiiegions, depending on the
availability of observations to inform the weighting.

Key References

Brunneret al., 2019 This paper includes a detailed method description and presents results based
on the common WP2 settindEUCP WP2 publication]

Lorenzet al,, 2018 This paper investigates the effect of the weighting method appliedeimum
temperature in North America and describes the selection of diagnostics to inform the
weighting.

Knuttiet al, 2017 This paper looks into the effect of the weighting method using the case of Arctic
sea ice extent.

Data

The weighting is applied tolavailable CMIP& aylor, Stouffer and Meehl, 2012pdels and initial
condition members. We use monthly data regridded to a regular 2.5°x2.5° grid and combine
historical runs and the representative concentration pathway 8.5 (RCR@&mVuureret al., 2011)

in the period 19958014 to intialize our weighting approach and RCP8.5 from 22380 as target
period.

As reference we use reanalyses data from the European Centre for Mdriunge Weather
C2NBOI aidaQ -Inetinh (Bee@ al, 20M)and from the National Aeronautics and Space
Administrations (NASA) MERRAZolod et al, 2015)as well as a data set based purely on
observations, which is combined from multiple sources for different varigi€BSCorneset al.
(2018) CERE®Wielicki B. Aet al., 1996)

Details of method

The method is based on a combination of historical model performance and model independence.
To inform the performance weighting we use six diagnostics, which can be based on any CMIP5
output variable for which observations are availablde calculation of a diagnostic follows a
straightforward approach: (i) variable, region, time period, and season are selected, (ii) the
climatology (CLIM) or standard deviation (STD) is calculated, (iii) the-tpguaint difference

EUCK776613 Deliverable R.2 11



I L

European Climate Prediction system

between model andie observational spread is calculated, and finally (iv) the area weighted root
mean squared error is calculated over the selected region.

The independence weighting is informed by diagnostics which can be based on any CMIP5 output
variable which is avable for all models. In practice, we use the same diagnostics as for the
performance weighting, with the only difference that the petotpoint difference (step (iii) above)

is calculated between each model pair.

The weights are calculated following gopaoach used byorenzet al.(2018)which is in turn based

on the work byKnuttiet al. (2017) Sanderson, Knutti and Caldwell (2015&)dSanderson, Knutti

and Caldwell (2015bjEach weight is a combination of the observatial distance paramete®
(informing the performance weighting) and the model distance paraméYer(informing the
independence weighting):

with the total number of modetuns M and the shape parameteys and, . For details on the
estimation of these shape parameters daarenzet al. (2018)and Brunneret al. (2019)

Observational constraints applied

When discussed in the context of obseneatal constraints model weighting schemes take a
somewhat special role. They use multiple observatased variables, sometimes termed
diagnosticgo inform the weights. Ideally, informing diagnostisc should show a strong relationship
between the simulatd historical values and the target which one tried to predict. In a classical
emergent constraints setting adding additional constraints usually leads to a strorggkadtion of
models and even none of the models being consistent with the applied camstrany more. In
contrast, weighting approaches tend to have an ideal number of diagnostics to inform the
weighting. Using less diagnostics leads to very strong weighting and is therefore prone to
overconfidence while using many diagnostics converges ttdsvaqual weighting(Lorenzet al,
2018) A disussion of the differences between emergent constraints and model weighting can be
found, for example, ilex Halkt al., (2019.

Sanderson, Wehner and Knultti, (2018 the seasonal climatologies of 12 variables to inform their
weights. These variables include basic ones such as temperature, precipitatication fluxes, and
pressure as well as more specific ones, such as coldest and warmest days and nig@dadseson,
Wehner and Knutti (2017)able 1 for a full overview). The weights are then applied to projections
of temperature and precipitation in North Ameridaorenzet al. (2018)use a very similar approach
and apply model weighting to maximum temperature in North America as well asr@gidn. From

a pool of over 20 possible diagnostics (including climatologies, variances, and trends) they select the
most informative nine basd on correlations between historical values and change in the target
variable. Among them are maximum temperature (climatology, variance, and trend), precipitation
(climatology and variance), and surface humidity (variance) l(eeenzet al. (2018) Table 1 foa

full overview).

More specifically,Knutti et al. (2017) focus on September sea ice extend in the Arctic. Four
diagnostics are selected based on expert knowledge: the September sea ice extend climatology and
trend as well as the climatology and variability in the surface air temperature.

EUCK776613 Deliverable R.2 12
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Here, ETHZ applies weighto constrain projections of summer and winter temperature and
precipitation in different European regions as detaile@mnneret al.(2019) Six diagnostics based
are selected: temperature (climatology), precipitation irt@dtology), shortwave downward
radiation (climatology), shortwave upward radiation (climatology and variance), longwave
downward radiation (variance).

Key assumptions

1 Future model performance can be inferred from historical model performance (basedamye of
diagnostics) (e.gKnutti (2008).

1 The dependence of models between each other can be estimated by their output Keugtj,
Masson and Gettelman (201)3)

1 Selection of the ideal diagnostics to inform the weighting as well as a reasonable number of
diagnostics to use (e.d.prenzet al. (2018).

1 How to translate observatiomodel distance into model performance (performance shape
parameter, how strongly do we weigfor model performance) and how to translate the model
model distance into model independence (i.e., when are two model independent; independence
shape parameterjKnuttiet al,, 2017)

Limitations
91 Availability of gridded observations to produce diagnostics relevant for the target variable.
1 Sufficient domain to average over and avoid the effect of natural variability on the weights.
1 The observational spread (i.e., from different sources) needs to be smaller than the model spread.
1 No extrapolation beyond original model range possible.
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B.2 The Reliability Ensemble Averaging methd@EA) ICTP

Authors: Sticchi Paolo, Nogherotto Rita, Erika Coppola, and Filippo Giorgi

Short summary of the method

The weighting methoddi o6 aSR 2y (62 AGNBtAFIOoAfAGEE ONMRGSI
reproducing present daglimate and the model convergence criterion that consider the spread of

the climate change signal across the modé&lse philosophy of the REfyproach is to minimize the
contribution of simulations that either perform poorly in the representation of presgay climate

or are outlier in the ensemble for the future projections, order to reduce the uncertainty and
increase the skill of the cliate model ensemble in Europe.

Keyreferences

Giorgi, F., and L.O. Mearns, 2002: Calculation of average, uncertainty range and reliability
2T NBIA2yIlf OfAYIFIGS OKIFy3dISa FTNRY ! hD/ a &aAiY
6wo ! 0¢ Jyumnal kfTkmate, 15, 1141158,

Giorgi, F., and L.O. Mearns, 2003: Probability of regional climate change calculated using the
Reliability Ensemble Averaging (REA) method. Geophysical Research Letters, 30, 1629.

Data

The weighting is applied to the alable CMIP%Taylor, Stouffer and Meehl, 201@jodels that we
have in house. Tdamonthly model data are regridded into a regular 2.5°%2.5° grid and we use the
historical period 1992014 has a reference period to calculate the first reliability criteria and the
mid of century future time slice period (204€D60) for the scenario cwentration pathway 8.5
(RCP8.5)van Vuureret al, 2011) As observed reference data we used thR®BS gridded dataset.

Details of method

¢g2 3IASYSNIf GNBEtALFIOAT AGE ONIR Of SagibnaléclimatdNBangzd S R
ensemble simulations. The first is based on the ability of a climate model to reproduce different
aspects of presentlay climate: the better a model performance is, the higher the reliability of that
model. We referto thisadtS a Y2 RSt LISNF2NXIyOSé ONRUGSNAZ2Yy D
convergence of the different model simulations for a given forcing scenario. The greater it is the
convergence the higher it is the reliability of the signal that is little sensitivéhéo model
RAFTFSNByOSad 2SS NBFSNI G2 GKAA Fa GKS aY2RSt O
SyasSyofS | @SNIIAYyIE o6w9!l 0o

In our REA method, the average changd.Y is given by a weighted average of the ensemble
members, that is:

B

oY JY =

1)
where the operatorA denotes the REA averaging aRds a model reliability factor
defined as
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Y Yi @Y toap Foar @)

Rs,iis a factor that measures the model reliability as a function of the model Btgsiit simulating
presentday value of a given variable. The higher the bias is the lower is the model reliability. Here
the bias is defined as the difference between simulated and observed mean value of the variable
for the presentday period.Rp,iis a fator that measures the model reliability in terms of the

distance Dr,) of the change calculated by a given model from the REA ensemble average change.

The higher is the distance the lower is the model reliability. Therefore, the distance is a measure of
the degree of convergence of a given model toward the average of the others. To sunfRagisze

a measure of the model performance criterion wHigiis a measure of the model convergence
criterion.

The distancér,is calculated using an iterativeqeedure. A first guess @ is the distance of each
nTi from the ensemble average changgat is, Drji I o8 with

W&

,B W'Y
0

The first guess values are then used in eq. (1) and edo @tain a firstorder REA average
change JY , which is then used to recalculate the distance of each individual modé as

w"Y Y and repeat the iteration. Typically, this procedure converges quickly after several
iterations.

The parametersn andnin eq. (2)can be usedd give different weigh to each criterion. For most
calculationam andn are assumed to be equal to 1, which gives equal weight to both criteria.
Also,RsandRbare set to 1 wheBandDare respectively smaller than To
summarizeeq.(2)statesthatar®@ RSt LINRP2SOGA2Y A& AGNBtAlLIOf SE
the ensemble average are within the natural variability, so fRat Ro=R= 1. As the bias and/or
distance grow, the reliability of a given model simulation decreases.

The parameter ineq. (2) is a measure of natural variability iny80average regional temperature

and precipitation.

In order to calculate, we consider the time series of observed regionally temperature and
precipitation for the twentieth century from the-BBS datset. We then compute yearly averages

of the time series after linearly detrending the data (to remove centggle trends) and
estimated as the variance of these 3@early averages.

The concept of reliability factor can be used to estimate the probability of future climate change
FNRY (GKS Y2RStf SyaSyotSo . ST2N8 R2Ay3 GKIG=Z
simulated change will actually happen is generally not knownedurtare conditions are not known

and therefore the model cannot be validated in its ability to predict climate change. Also not known
is the probability distribution of the simulated changes, since this would require a very large sample
of model simulatios. As a result, some assumptions need to be made concerning the likelihood of
a model outcome.

EUCK776613 Deliverable R.2 16
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Ly 2dz2NJ YSGK2RXZ (GKS fA{1StAK22R Pmia@dpditionalSoRhed A i K
reliability parameter defined in eq. (2). The normalizatadrihis likelihood yields the definition

=3 3)
aR

j=1

In other words we assume that the change simulated by a more reliable model is more likely to
occur. Fronequation (3) it follows that, for a given emission scenario, the probability of a climate

A N v oA A~

changesSEOSSRAY 3 I OFfMLhivealy: 6 KNBEaK2f R n
nTHr ¢ (4)
e
n _n € C
PmDTth —aiPmI _aié.. NI L
gd _Ryp
]:1 J

wherePme¢akd GKS LINRPOLFOAfAGE 2F GKS (8YLISNITwidzNB
the scenario considered.

From the probability of exceedaneee computed the Probability Density Function (PDF)

as the difference between Bm & ¢ 4 kor the 2.5°x2.5° boxes centered @vealand,
Dusseldorf, Madrid and Transylvania (Fig¢) Ind for the three SREX regions (NEU, CEU, MED) +
the entire Europan domain (NEACEUMED) (Fig.-8).

The changes are calculated for the period 2Q060 relative to the 1992014 period.

Limitations
1 The apjpicability of the method is limited by the availability of observations

1 The method at the momendoesn't consider multiple observations and the spread of the
observational dataset.
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Results

We show here some preliminary results applying the method using the CMIP5 models reported in

Table 1.

Table 1: CMIP5 models used in the REA metadcllations.

BCACSM1.1
BCGCSM1.1M
BNUESM
CanESM2
CMCacMm
CMCa&cMSs
CSIREACCESS

CSIREACCESS
CSIReMK36
ECEARTH
FIGESM
GFDEESM2M
HadGEMZES
IPSECM5SAMR

MIROGESM

MPFESMLR

MPFESMMR

NCARCCSM4
NCARCESMBGCNCARESM4
CAM5

NorESMIM

EUCHR776613 Deliverable R.2
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Figure 1: Temperature Chan@€) probability density functions for the four small boxes centered on Dusseldorf, Svealand, Madrid

and Transylvania for the two seasons (JJA, DJF).
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Figure 2: Precipitation Change (%) probability density functions fdotinesmall boxes centered on Dusseldorf, Svealand, Madrid

and Transylvania for the two seasons (JJA, DJF).
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Figure 3: Temperature Change(°C) probability density functions for the whole European ar€E(MMHED), and for the NEU,
MED, CEU regions in the JJA season.
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