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1. Executive summary 

This deliverable reports on EUCP work in WP2 T2.3 regarding methods of sub-selection in climate 

science. Data reduction without losing information, the ‘distillation’ of data in IPCC terms, is highly 

relevant for example for downscaling purposes or impact modelling applications that cannot take the 

full CMIP6 ensemble as input. In such cases an informed choice of which models, ensemble members 

or periods to use will help to better represent the spread of driving models in experiments, thereby 

making results and outcomes more usable and useful. 

  

Furthermore this deliverable reports on methods for the development of event sets of future weather. 

Information on future weather conditions, in addition to widely available information on future mean 

climatic conditions, is relevant as it more directly relates to (societal) vulnerability and impacts, and 

thus can more directly inform users or policy makers.  

 

The report describes the development of several distillation methods, through seven highlights named 

‘science parts’. These showcase practical examples of different selection methods and methods for 

creating future weather event sets, including examples of their results. Overview of the science parts: 

1. The ClimWIP tool weighs or selects CMIP5/6 climate model runs based on independence and 

performance. Open-access software is available to allow a user to find a representative set of high 

performing, independent models for a task.  

2. A qualitative sub-selection method, ranking models from ’implausible’ to ‘satisfactory’ based on 

regional model performance in key climate processes. Users can take this information on board 

when making their model choices. 

3. Selecting members based on large scale characteristics. An exploration of the spread in changes 

explained by large scale characteristics using the Summer NAO and the position and strength of 

the Jet Stream. 

4. Model selection method using singular vector decomposition and hierarchical clustering with the 

aim to create a smaller model subset that retains the variability of user relevant climate 

information. 

5. A method to investigate internal variability and how many ensemble members are required to 

adequately sample the complete distribution of variability. This is useful for both end users (e.g. 

to define input for a tailored impact study) and climate scientists (e.g. in experimental design). 

6. A regional climate modelling method based on pseudo-global warming experiments to create 

event sets of future weather similar to observed weather. An example for a set of future droughts 

like the 2018 drought is provided. 

7. A sub-selection method based on initial-condition large ensemble data to create event sets of 

future weather similar to observed weather. An example for future droughts like the 2018 drought 

is provided. 

A short wrap-up is provided at the end, in which we note similarities between the methods and studies 

presented. Furthermore we provide some advice for future users of selection methods and for 

scientists building on the work of EUCP. 
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2. Project objectives 

These deliverables have contributed to the following EUCP objectives (Description of Action, Section 
1.1): 

No. Objective Yes No 

1 
Develop an ensembles climate prediction system based on 
high-resolution climate models for the European region for 
the near-term (~1-40 years) 

 Yes  

2 
Use the climate prediction system to produce consistent, 
authoritative and actionable climate information 

 Yes   

3 
Demonstrate the value of this climate prediction system 
through high impact extreme weather events in the near 
past and near future 

 Yes   

4 
Develop, and publish, methodologies, good practice and 
guidance for producing and using EUCP’s authoritative 
climate predictions for 1-40 year timescales 

 Yes   

 

3. Detailed report 

3.1 Introduction  

This deliverable outlines the work of EUCP WP2 T2.3 regarding methods of sub-selection in climate 

science. Such (sub-)selection can refer to the selection of specific climate models from a multi-model 

ensemble of climate models (e.g. CMIP6, EURO CORDEX), the selection of specific climate model runs 

from a single model initial-condition large ensemble (Deser et al. 2020), or specific climatic events 

from a longer climate model run. Many reasons for performing such selections exist, in this section we 

introduce some of these reasons.  

 

Climate change impacts societies and natural systems around the world, though its impacts and effects 

vary from region to region and from sector to sector. Actionable climate information therefore 

depends on the specific region considered, but also on the precise user that is considered or the 

question that is asked. Chapter 10 of the recently published IPCC report (IPCC 2021) describes the 

process of constructing ‘user-oriented climate information’. Information from observational data, 

output from climate models, the scientific literature and climate experts, must be combined and 

‘distilled’, to add value and increase context-relevance. The methods for this ‘distilling’ of data, data 

reduction without losing information, are topics of ongoing research. Their importance is well-known 

though, IPCC notes “Data, either from observations or models, is in general not inherently information, 

but may contain relevant information if interpreted appropriately (Hewitson et al., 2017).” 

 

In this report we discuss work on several sub-selection/distillation methods, sections 3.2 to 3.8 are 

highlights of the scientific progress made within this task. They show practical examples of different 

selection methods and (an example of) their results. For example, whilst the CMIP5 and CMIP6 model 
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ensembles include a wealth of climate data, model dependencies, model biases, or simply the large 

number of models make sub-selection necessary. Informed sub-selection, taking into account quality, 

(in)dependence, and the range of uncertainty, is much preferable over random sub-selection. A biased 

sub-selection of CMIP5 GCMs to drive EURO-CORDEX RCMs might for example be the cause of the 

RCM ensemble missing the upper part of the climate change uncertainty range (Boé et al. 2020). The 

ClimWIP tool (section 3.2) or the qualitative performance assessment (section 3.3) were developed 

with such applications in mind, and provide guidelines for optimized sub-selection based on user 

requirements. 

 

Section 3.4 investigates the possibility of data distillation through developing understanding of key 

circulation characteristics, how they change in response to climate change and how they influence 

regional climate. This can potentially lead to the identification of a number of axes along which 

uncertainty maximizes and from which model sub-selection can be done. The resulting subset of 

models can then be used for storyline development of future change (Zappa and Shepherd, 2017; 

Shepherd et al. 2018). Section 3.5 reflects on downscaling experiments, and puts the outcomes of 

high-resolution downscaling ensembles into the context of the GCM/RCM ensembles that they are 

based on. This also show  Section 3.6 develops methods to investigate internal variability and how 

many ensemble members are required to adequately sample the complete distribution of variability.  

 

Finally, sections 3.7 and 3.8 describe two independent methods for the construction of future extreme 

weather events. Tangible examples of future weather, in the cases discussed here linked to recent 

observed weather events, can be very useful for informing adaptation policy or stress tests. In section 

3.7 a set of Pseudo Global Warming regional model experiments is performed to assess the 

development of a drought like 2018 in a warmer climate. This approach is complemented in section 

3.8 by a sub-selection approach using initial-condition large ensemble data. The methods developed 

can be applied towards the EUCP aim of providing event sets of future weather. 

 

In summary, this deliverable aims to describe and evaluate different methods of (climate data) sub-

selection, with the aim to contribute to more actionable user-oriented climate change information. 

Some of the highlighted studies have been published in the peer-reviewed scientific literature (listed 

in Section 3.9), others are undergoing peer review at time of writing or are still being developed further 

before publication. We have aimed to keep the main report concise, by writing concise summaries of 

the scientific results. Where appropriate appendices including more detailed methodological 

descriptions or the full results are provided.  

3.2 Science part 1 - Pruning the CMIP5/6 Family Tree using ClimWIP (ETHZ) 

 

MOTIVATION -- There is a growing consensus among climate scientists that our research must reach 

a broad user community; stakeholders, policymakers, and interdisciplinary researchers seek 

accessible, actionable climate information based on the most up-to-date, rigorously vetted climate 

model output available. Delivering this information presents a challenge. Which models realistically 

simulate a region, season, or process of interest? Are newer model versions demonstrably superior to 

their predecessors? If so, is it necessary, for example, to update the global models that drive regional 

models each time new simulations are published? While diagnostic studies may document systematic 
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physical climate biases or other model quality issues, many are built to advise but not actively guide 

users in the model selection process. 

 

The EUCP project is uniquely positioned to actively guide users to the best European climate 

information available. Model selection logically follows from the performance and independence 

weighting strategies developed in WP2 (Brunner, et al. 2020a) to provide constrained estimates of 

mid- and end-of-century regional European temperature and precipitation change. In this deliverable, 

we illustrate how one WP2 weighting strategy, Climate model Weighting by Independence and 

Performance or ClimWIP  (Brunner et al. 2019, Brunner et al. 2020b), can be utilized to select 

simulations from distinct climate model families within the CMIP5/6 archives that project realistic mid-

century Central European summer climate change. The ClimWIP sub-selection protocol lessens the 

burden of updating models generation-to-generation by allowing users to generate representative 

model subsets from multi-generational archives with minimal computational burden. 

 

APPROACH -- To select high performing, reasonably independent climate models best suited for 

applications requiring realistic estimates of mid-century Central European summer surface air 

temperature (SAT) and precipitation (PR) change, we first compute aggregated distance from 

observation, Di , for each member of a combined CMIP5/6 archive using ClimWIP.  The CMIP5/6 archive 

consists of historical + RCP8.5 projections for CMIP5 and historical + ssp585 projections for CMIP6. The 

two future scenarios are comparable though not identical (Tebaldi et al., 2020); for discussion of 

rationale and lists of all members used, please refer to Appendix A1.2.  ClimWIP is the performance 

and independence weighting scheme first applied in Knutti et al. (2017), which has brought together 

model evaluation and notions about commonalities in model development to provide justifiable 

representations of uncertainty in multi-model ensemble projections of future climate (Sanderson et 

al. 2015, 2017). It has since been integrated into the Earth System Model Evaluation Tool (ESMValTool; 

Righi et al. 2020) for general open use as part of the EUCP effort towards methodological open access 

(Climate model Weighting by Independence and Performance (ClimWIP) — ESMValTool 2.3.0 

documentation).   

 

Aggregated distance from observation, Di , is computed as the sum of area-weighted root-mean-

square-errors (RMSE) between CMIP5/6 members and observations for the following “performance 

predictors” : 

● Annual average European SAT Climatology;    1950-1969 

● Annual average European SAT Climatology;    1995-2014 

● JJA average Central European Station PR Climatology;    1995-2014 

● JJA average Central European SREX (CEU) SWCRE Climatology;   2001-2018 

● Annual average North Atlantic SST Climatology;    1995-2014 

● Annual average Southern Hemisphere midlatitude SWCRE Climatology;  2001-2018 

SWCRE is the difference between all and clear sky downwelling shortwave radiation at the surface 

(shortwave cloud radiative effect) and SST is sea surface temperature. All fields are remapped onto a 

2.5˚ × 2.5˚ latitude–longitude grid (Brunner et al. 2020b) prior to the computation of RMSE. RMSEs for 

each predictor are then normalized by the predictor mean before being added together. For more 

information about predictor choices, the observational datasets used, and other methodological 

details, please refer to Appendix A1.3 and 1.4. 

 

https://docs.esmvaltool.org/en/latest/recipes/recipe_climwip.html
https://docs.esmvaltool.org/en/latest/recipes/recipe_climwip.html
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Upon computing  Di , we commence with the first selection round: to select the highest performing 

(most suitable for the task of simulating Central European summer climate change) member from each 

“model ensemble” within the CMIP5/6 archive. We define “model ensemble” as an initial condition 

and/or perturbed physics ensemble where members share the same model name. From each model 

ensemble, the member with the lowest value of Di ,(closest to observed) is selected to become a 

branch on  the  CMIP5/6 family tree shown in Fig. 1. It is notable that the highest performing member 

of each model ensemble (as selected by ClimWIP) is often not the first member. ClimWIP offers an 

alternative to the approach of simply selecting “member 1” when multiple members of a model exist 

(Karlsson & Svensson, 2013; Liu et al., 2012; Sillmann et al., 2013); an alternative that ensures all 

models are represented in the best possible light.  

 

To formulate the CMIP5/6 family tree, a hierarchical clustering approach (Bar-Joseph et al., 2001; 

Müllner, 2011) is taken using ClimWIP’s inter-model distance metric, Sij ,  which is used to determine 

to what degree a model is a dependent “close relative” of another model. Sij  is also a cosine latitude 

weighted RMSE-based metric, computed between all model pairs, based on predictors found to 

identify initial condition ensemble members as members of the same model and to assign degrees of 

dependence to closely related models (Merrifield et al. 2020). Models are grouped using average-

linkage criteria; distances to existing clusters are calculated using cluster average Sij .  In the resulting 

family tree dendrogram, models with many close relatives (more branches left to right) are grouped 

at the top of the page and models with fewer similar counterparts attach to the tree nearer to the 

bottom of the page (Fig. 1). For more information about construction of the family tree, please refer  

to Appendix A1.5.  

 

Because the Di  of each model is known, we are able to “prune” the lower performing branch from 

each stem to reveal subsets of independent CMIP5/6 members.  Users can refer to the tree to select 

the highest performer from a particular model family, for example, HadGEM3-GC31-MM from the 

family of models, listed in Fig. 1 in red, with UK Met Office Unified Model and Hadley Centre Global 

Environment Model atmospheres (Andrews et al., 2019). It is of note that CMIP6 models tend to, but 

don’t always, perform better than their CMIP5 predecessors. CMIP5’s GFDL-CM3 is the second highest 

performer in the set, behind only CMIP6’s AWI-CM-1-1-MR. The ten highest performers (listed in the 

inset of Fig. 1) tend to come from the more highly branched upper portion of the tree, indicating that 

they are close relatives of one another. For use cases such as regional modelling, a range of high 

performing independent models is often more valuable than a set of high performing very similar 

models. Because of this, we also recommend a set of independent high performers, listed in the inset 

of Fig. 1, that we select through the minimization of a performance/independence cost function.  
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Figure 1.  CMIP5/6 family tree created using ClimWIP independence predictors (following Merrifield et al. (2020); annual 

average global land temperature climatology and annual average Northern Hemisphere sea level pressure 

climatology;1950-2014). Each CMIP5/6 model is initially represented by its highest performer. Following each branch to 

the right, the higher performer of the pair continues while the lower performer is “pruned”.  The 10 highest performers 

for mid-century JJA Central European climate applications and a recommended set of 5 independent high performers 

are listed in the inset.  
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Figure 2. Distributions of projected June-July-August (JJA) Central European  surface air temperature (SAT; panels a,c,e) 

and precipitation (PR; panels b,d,f) change (∆) between the periods 1995-2014 and 2041-2060 (mid-century) for CMIP5 

historical + RCP8.5 projections and CMIP6 historical +  ssp585 projections (276 members total; see Tables A1a,b in 

Appendix A1). Gray histograms show the full distribution with its ensemble median in dashed gray. ClimWIP-weighted 

distributions are overlaid in yellow for SAT and light blue for PR, respectively. Weighted ensemble medians are shown 

in solid black and listed in the upper right corner of panels a) and b).  In panels c) and d), the gray raw distributions are 

overlaid with  “one-model, one-vote” SAT and PR distributions composed of the highest performing (closest to 

observed) member of each model ensemble (68 members total; see Fig. 1). Ensemble medians of the one-model, one-

vote subsets are shown in solid black and listed in the upper right corner of panels c) and d). Panels e) and f) show 

where the 5 recommended independent high performers fall within the initial full CMIP5/6 JJA Central European mid-

century change distributions. 

 

Prior to computing the performance/independence cost function, we define a pool of high performers 

using a performance threshold of Di < 5 (Di ranges from 4.1 to 11.2). This eliminates lower performing 

(though possibly very independent) models from contention and reduces the selection pool from 68 

to 20 models. All possible combinations of 5 out of the 20 models in contention are then iteratively 

evaluated for the magnitude of their performance/independence cost function, C⍺, defined as: 
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In the first term, the performance portion of the cost function is the sum of Di of the 5 chosen models 

divided by the minimum Di of the highest performing model in the selection pool. In the second term, 

the independence portion of the cost function consists of the sum of the distances between a model 

and the other 4, Sij, divided by the average distance of that model from all other models in the selection 

pool 𝑆𝑖𝑁. The factor of 1/2 in the independence term accounts for double counting of the distance 

between model i and model j and between model j and model i. A performance/independence trade-

off factor, ⍺, allows users to decide the importance of independence in model selection for their use 

case. Here, we choose  ⍺ ≈ 0.25 to recommend AWI-CM-1-1-MR-r1i1p1f1, MRI-ESM2-0-r1i1p1f1, 

HadGEM3-GC31-MM-r4i1p1f3, NorESM1-ME-r1i1p1, and GISS-E2-1-G-r1i1p3f1 as five independent 

high performing simulations for Central European summer climate applications. For more information 

on model sub-selection as a function of ⍺, please refer to Appendix A1.6.   

 

MAIN RESULTS -- The ultimate goal of ClimWIP model sub-selection, shown in Fig. 2, is to provide a 

representative set of high performing, reasonably independent models for a task, in this instance, 

realistic mid-century Central European summer climate change. Therefore, we must evaluate where 

recommended independent high performers fall within the CMIP5/6 distributions of projected June-

July-August (JJA) Central European SREX region (CEU; Iturbide et al., 2020) SAT (Fig. 2a,c,e) and PR (Fig. 

2b,d,f) change between 1995-2014 and 2041-2060 average values. To contextualize the positions of 

the independent high performers, the  CMIP5/6 JJA CEU distributions weighted by ClimWIP are shown 

in panels a and b for SAT and PR, respectively. As highlighted in previous WP2 reporting, ClimWIP 

provides a justifiable constraint on ensemble projection uncertainty. Here ClimWIP tends to give more 

weight to models that project around 2-2.5˚C of JJA CEU warming by midcentury (in the RCP8.5/ssp585 

scenario), with the exception of two high performing CMIP5 members with warming estimates at the 

upper and lower ends of the distribution (GFDL-CM3-r1i1p1 and GFDL-ESM2M-r1i1p1). ClimWIP also 

narrows the overall PR distribution towards a median PR reduction of -0.16 mm/day or an about 7% 

reduction from the observed 1995-2014 JJA CEU area average (not shown).   

 

To reflect another common model sub-selection strategy, often referred to as the “one-model, one-

vote” approach (Knutti et al. 2017), distributions that consist of the highest performing member from 

each model ensemble are shown in Figs. 2c and 2d. The distributions are broadly similar to their 

ClimWIP-weighted counterparts. For SAT, both the ClimWIP-weighted and one model, one vote 

distributions lack the clear bimodality of the full CMIP5/6 distribution (Fig. 2e, gray), but do not 

eliminate the possibility of 3-4˚C midcentury JJA CEU SAT changes.  The five independent high 

performers selected via the ClimWIP sub-selection protocol project midcentury JJA CEU SAT change 

along these lines (Fig. 2e, vertical lines); 4 of the 5 models project midcentury JJA CEU SAT changes of 

between 2˚C and 3˚C, around the ensemble median, while the remaining model, HadGEM3-GC31-MM,  

projects 3.5˚C of warming by midcentury.  

 

ClimWIP and the one model, one vote approach differ in how they constrain the high side tail of the 

midcentury JJA CEU PR distribution: ClimWIP more substantially reduces the likelihood of a future 

increase in JJA CEU PR. The difference arises in part due to the degrees of dependence between multi-

model ensemble constituents; ClimWIP accounts for these degrees of dependence, while the one-

model, one vote strategy assumes independence based on model name (Merrifield et al. 2020). Even 

so, a midcentury JJA CEU PR increase is unlikely in either case, a tendency also reflected by the 5 

independent high performers (Fig. 2f, vertical lines). Ranging from -0.05 mm/day (2% reduction) to -
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0.41 mm/day (17% reduction), the independent high performers span the constrained distributions 

with 2 models closely resembling the constrained ensemble median projection of approximately -0.15 

mm/day and and 1 model, again HadGEM3-GC31-MM, capturing the more substantial midcentury JJA 

CEU PR reduction of the ensemble’s low side tail. 

 

SUMMARY -- We demonstrate how ClimWIP, a multi-model ensemble weighting strategy developed 

as part of the EUCP’s WP2, can be utilized to select independent, realistic model projections from the 

CMIP5 and CMIP6 archives for a given task. Here the ClimWIP sub-selection protocol is applied to the 

task of selecting 5 models suitable for the projection of midcentury summer Central European climate 

change under the RCP8.5/ssp585 forcing scenarios. The 5 recommended independent high performers 

are:  

● AWI-CM-1-1-MR  r1i1p1f1   CMIP6 historical + ssp585 

● MRI-ESM2-0   r1i1p1f1   CMIP6 historical + ssp585 

● HadGEM3-GC31-MM r4i1p1f3   CMIP6 historical + ssp585 

● NorESM1-ME  r1i1p1    CMIP5 historical + RCP8.5 

● GISS-E2-1-G  r1i1p3f1  CMIP6 historical + ssp585 

based on their performance (with respect to 6 relevant observed climatological benchmarks) and 

independence (following Merrifield et al. 2020). The ClimWIP sub-selection protocol can be employed 

for any task for which identifiable performance metrics exist and can select subsets of any size; work 

is currently underway to provide 3, 5, and 10 model subsets for other European regions and seasons 

covered by the EUCP using predictors selected from a base set of climate fields (SAT, PR, SWCRE, SST 

and sea level pressure). In the near future, the ClimWIP sub-selection protocol will be integrated into 

the ClimWIP recipe on the ESMValTool for open use.  

3.3 Science part 2 - CMIP6 sub-selection based on an assessment of key performance criteria (MO) 

 

INTRODUCTION AND RATIONALE -- The aim in this study is to demonstrate a sub-selection of the 

CMIP6 ensemble for downscaling and regional impact assessment, where it may not be feasible to 

apply the full ensemble. Sub-selection might focus on selecting a subset that (a) samples from the 

range of future changes in relevant climate characteristics, and/or (b) excludes the least realistic 

models from which projections might be considered less reliable, or a combination of both of these 

criteria (e.g. McSweeney et al. 2015, Lutz et al. 2016). 

 

Historically, climate modelling communities have been cautious about weighting or eliminating poor 

performing members due to the difficulties of linking baseline performance with projection plausibility 

defaulting to a ‘one model, one vote’ approach (e.g. Knutti et al. 2010, IPCC AR4 2013, IPCC AR5 2013). 

However, an increasing body of literature demonstrates cases where observed shortcomings in the 

ability of an individual model to realistically represent a baseline climatology are an indicator of 

reliability of that model’s future projections (e.g. Whetton et al. 2007, Overland et al. 2011, Lutz et al. 

2016, Ruane and Dermid. 2017). Further, for the purposes of applying models in impact studies at the 

regional scale, very unrealistic models may be of limited use if they require excessive bias correction. 

While these are strong arguments for filtering the ensembles for regional applications, the practical 

implementation requires us to navigate several challenges such as how to select appropriate criteria, 
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where the appropriate thresholds should lie for ‘acceptable’ versus ‘unacceptable’ models, and how 

to deal with models that perform well against some criteria but poorly against others. 

 

In EUCP, we build on the approach developed in McSweeney et al. (2015, 2018), previously applied to 

CMIP5. In McSweeney et al. (2015, 2018), CMIP5 models were assessed on a range of regional criteria, 

including the circulation climatology, the distribution of daily storm track position, and the annual 

cycle of local precipitation and temperature in European sub-regions.  These characteristics were 

assessed using a qualitative framework for flagging poorly performing models as ‘implausible’, 

‘significantly biased’, or ‘biased’. This performance information was subsequently used together with 

information about projection spread (McSweeney et al. 2015) or model interdependencies 

(McSweeney et al. 2018) to arrive at subsets of the required size. 

 

For CMIP6, we focus on building the regional performance ‘evidence base’ using a similar qualitative 

assessment framework as McSweeney et al. (2015). Here we classify models in a more informative 

way than simply keep or reject, to provide further information about how that model may perform in 

terms of key processes that influence the climate in a particular European region. These classifications 

can be broadly described as ‘implausible’ (unable to represent the present day climatology in a useful 

way), ‘unsatisfactory’ (containing substantial errors and relatively poor compared to other models) 

and ‘satisfactory’ (either lower than average errors or if more significant biases are present they are 

in limited in terms of the region affected). 

 

The CMIP6 regional assessment summary will subsequently be combined with information about 

future projection range or model interdependencies (potentially drawing on the other methods of this 

report) to identify subsets of the ensemble. In this science part, we will demonstrate the application 

of the performance information to identify CMIP6 subsets of a number of sizes (for example, n= 5, 

n=9, n=15) which will be suitable for a range of applications.   

 

PERFORMANCE ASSESSMENT CRITERIA -- Classification definitions -- We have chosen a traffic light 

style approach to model classification; we initially start by ruling out models that are unable to 

represent the criteria in any useful way. Red is used for this category and is defined as: unable to 

represent the present-day climatology in a useful way. Red is used to flag models that are considered 

implausible and should be ruled out from sub-sampling on the basis of a single criteria. The other 

classifications used are as follows: 

- Orange  Substantial errors and bias in remote regions and present in the local region of interest. 

- Yellow  Some substantial errors present, but not widespread or not present in the local region of 

interest. 

- White  Lower than average error over both local and remote regions. 

- Grey  Data/analysis not available. 

The selection of the individual criteria and examples of how the assessment has been carried out is 

described in the following sections. The application of this assessment to sub-selection is then 

described in the last section.   

 

PERFORMANCE ASSESSMENT CRITERIA --  A number of criteria are selected based on their importance 

for the European climate, key variables such as temperature and precipitation, along with others that 
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indicate how well models are able to represent key processes that drive the present day and future 

climate changes for Europe.  

 

The near surface temperature and precipitation are key variables for future climate and are of primary 

consideration in impact studies, especially in terms of future hydrology considerations  (e.g. White et 

al 2011 , Ruane et al. 2014, McDermid et al 2015). They have been considered key variables in previous 

sub-setting approaches (e.g. Ruane and Dermind 2017, McSweeney et al. 2015).  

 

A number of previous studies have considered the importance of capturing the main synoptic features 

and large-scale atmospheric circulation patterns (e.g. McSweeney et al. 2015, Prein et al 2019) as a 

key criteria for GCM sub-setting. For northern Europe in particular large scale weather patterns and 

the prevailing South Westerlies are essential to representing the climate. In the winter (DJF) many 

models have a southern bias in the flow and the winds become too zonal with a positive bias in the 

windspeed across central Europe. In the summer (JJA) the prevailing Westerlies are less strong but still 

an important driver of weather systems and key for representing the climate. We assess the models 

by comparing a 20 year baseline climatology with the ERA data, using a similar approach to 

McSweeney et al. (2015).  

 

These features along with the North Atlantic storm track are important for representing the climate 

and the potential future impacts of changes in the climate. Extratropical cyclones are the dominant 

weather type in mid-latitudes where they can have a significant impact due to extreme precipitation 

and windspeeds (Browning 2004, Priestly et al. 2020). They have an important role in the general 

circulation in the poleward transport of heat, moisture and momentum (Kaspi and Schneider 2013) 

and in maintaining the latitude westerly flow. We use the analysis of Priestly et al. (2020) to assess the 

individual CMIP6 models for the main North Atlantic region and the individual European regions. 

Blocking by high pressure weather systems is known to cause periods of cold dry weather in the winter 

and summer heat waves. Blocking is typically underrepresented in GCMs and this is still the case in 

large parts of Europe in CMIP6, although there has been some improvement in the bias in many CMIP6 

models (Davini and D’Andrea 2020). We use the results of the analysis carried out by Davini and 

D’Andrea (2020) to assess the performance of the CMIP6 models based on RMSE, bias and correlation. 

 

Previous studies have indicated that North Atlantic Sea Surface Temperature (NASST), including the 

Subpolar Gyre (SPG) are a significant driver of variability in the European climate (Friederichs and 

Hence 2003, Sutton and Hodson 2003, Sutton and Buwen 2012, Dong et al 2013, Menary et al.,2021).  

The AMOC also plays a significant role in determining the present and future NASST, along with the 

European climate due to its role in the poleward transfer of heat and ocean circulation. The CMIP5 

and CMIP6 ensemble both predict a reduction in the AMOC by the end of century for higher emissions 

pathways and it is likely that changes in the AMOC and NASSTs may play an increasingly important role 

in future changes to the temperature and precipitation patterns in Europe. We use comparisons of 

spatial maps of SST temperature bias in the NA along with comparisons of the SPG gradients with 

reanalysis data to classify SST performance. The AMOC model comparison with rapid data from the 

analysis of Menary et al. (2020) is used to assess the AMOC in each model. 

PERFORMANCE ASSESSMENT EXAMPLES -- Examples of how the classifications have been applied to 

the models for winter circulation are shown in Fig. 3. The top 2 models (to the right of ERA5)  have 
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been taken from the yellow and white classification and are considered ‘satisfactory’ models. In 

comparison to the ERA5 data they have well represented wind patterns, and magnitude biases in the 

windspeeds are relatively small. The unsatisfactory models have a wind pattern that is too westerly, 

and windspeeds that are too strong over central Europe. The excluded models have an almost entirely 

westerly (no south-westerlies) wind direction and large positive bias over Europe. 

Comparison of the models with the observed precipitation cycle for central Europe  is shown in Fig. 4. 

An example assessment table (for a selection of models) for the large-scale criteria, which is applied 

for all regions is shown in Table 1. 

 
Figure 3. Examples of winter circulation classifications for a sample of individual models. Top row: ERA5 (far left),  yellow 
and white models (satisfactory), middle row: orange models (unsatisfactory), bottom row: red models (excluded).  
Windspeed and direction are plotted as a 20 year mean 1995 – 2014.  

USING PERFORMANCE INFORMATION TO IDENTIFY SUITABLE SUB_SETS --  We aim to use the results 

of the assessment described in the previous section to identify a suitable sub-set from the CMIP6 

ensemble for each European SREX region. An example of the assessment information for the criteria 

that will be used in this method is shown in Table 1.  If a model has been flagged red for one of the 

assessment criteria, it is removed from the subset as this indicates that it is unable to represent a key 

process driving the present-day climate and it is reasonable to assume that changes in the climate 

projected by the model cannot be interpreted in a meaningful way. The intention is to produce a 

subset of models that captures the full ensemble range that includes all models that can be considered 

to provide plausible projections. We also aim to further select for models that are considered to 

perform better against the assessment criteria, while maintaining this projection range, see Fig. 5 for 

an overview of the method. The impact on the  projections for each of the SREX regions of applying  

these criteria as outlined in Fig. 5 to the temperature and precipitation projection spread (for ssp585, 

end of century) is shown in Fig. 6.  It is noted that this approach to sub-selection eliminates more 

models that show relatively modest changes,  than those with higher climate sensitivity.  



 

EUCP (776613) Deliverable D2.4  Page 16 
 

Figure 4. Precipitation annual cycle for CEU (top left), model comparison with EOBS (shown as solid black line). 

Correlation (over 12 months) and seasonal RMSE for  each model.   Monthly averages are taken over a 20 year 

climatology (1995-2014). The RMSE and correlation are calculated from the monthly averages.  

NEXT STEPS -- The aim of this approach is to produce recommended subsets for each of the European 

SREX regions. These subsets will be of a range of sizes from about 15 models (as a subset of plausible 

GCMs), to 5 models (for downscaling, this subset will also be dependent on data availability). For 

further thinning of the ensemble, such as in the case of downscaling a number of options are available 

to the end user. From the assessment information available preferred models that are classified as 

satisfactory against the criteria can be selected where this allows for the ensemble range to be 

maintained. An alternative approach could be to thin the remaining ensemble by removing nearest 

neighbours (where models share large amounts of the same code).  

 
Figure 5. Overview of the sub-selection method using the assessment criteria in Table 1.  
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Table 1. Sample assessment table for large scale criteria for a selection of CMIP6 models. A sample of models are shown 
here,  more model assessments data are available in Appendix A2 along with the  flags for each of the SREX regions.  
 

All regions 

 
Seasonal mean 

blocking 

frequency (DJF) 

Mean DJF 

circulation 

Seasonal 

mean 

blocking JJA 

Mean JJA 

circulation 

Atlan

tic 

SST 

DJF 

Atlan

tic 

SST 

JJA 

Storm 

Track DJf 

Storm 

Track JJA 

A

M

OC 

AWI-CM-1-1-MR          

AWI-CM-1-1-LR          

ACCESS-CM2          

ACCESS-ESM1-5          

BCC-CM2-MR          

BCC-ESM1          

CAMS-CSM1-0          

CESM2-WACCM-FV2          

CESM2-WACCM          

CESM2          

CESM2 – FV2          

CMCC-CM2-SR5          

CNRM-CM6-1-HR          

CNRM-CM6-1          

CIESM          

CNRM-ESM2-1          

CanESM5          

EC-Earth3-Veg          

EC-Earth3          

FGOALS-g3          
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Figure 6. CMIP6 seasonal temperature and precipitation projection scatter for the EUCP regions, projected changes are 
for end of century, ssp585 calculated as a 20 year mean 2081-2100 (top row JJA , bottom row DJF). Baseline period 1995-
2014.  The position of red models in the spread are shown as red, models with more than 3 orange flags but no red flags 
are marked as orange. 

3.4 Science part 3: Towards subselection based on circulation changes: changes in Jet Latitude and 

Strength and the Summer NAO (MO) 

 

The UK Met Office has been exploring ways to characterise projection uncertainties according to large 

scale physical changes. By understanding how changes in key circulation characteristics of the regional 

climate drive local characteristics of climate change (e.g. mean precipitation changes), we can 

potentially identify useful axes against which to sub-select and develop storylines of future change 

that can be used to communicate coherent scenarios of projected changes. 

 

We have explored a number of different ways of characterising large-scale characteristics of European 

climate. These approaches include a number of circulation indices such as weather types based on a 

clustering approach, blocking indices, storm tracks and the jet stream. Our analysis is based on the 

Met Office’s 15-member PPE (‘PPE-15’) (Murphy et al., 2018) and a 13-member subset of high-

performing members of CMIP5 (McSweeney et al., 2018), which comprise the UKCP18 global dataset.  

  

JET STREAM STRENGTH AND LATITUDE -- Here we show an application of an index describing the 

latitude and strength of the Eddy-driven jet stream over the north Atlantic. The diagnostics of jet 

latitude and strength we use here are based on those of Woollings et al. (2010).  The latitudinal 

positions of the jet stream are characterised in autumn and winter by a distinctive trimodal 
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distribution, with ‘preferred’ positions at around 35°N, 45°N, and 55-60°N, and tending towards the 

two northern positions and weaker flow in summer and spring (Fig. 7, Top row). 

 
Figure 7. Distribution of daily North Atlantic jet stream latitude and strength for ERA-Interim observations 1981-2000 
(top), and projected changes to those distributions by 2081-2100 under RCP85 in the 15-member PPE (middle) and 
CMIP5-13 (bottom).  Dotted lines indicate the 9 distinct jet regimes. 

 

Here we link projected changes in the jet stream to changes in regional temperature and precipitation. 

Fig. 7 (middle and bottom rows) shows that projections from PPE-15 and CMIP5-13 indicate a general 

tendency for a northwards shift of the jet.  In the PPE-15, this manifests as an increase in days where 

the jet occupies in central and northern positions, as well as greater strengths in SON and MAM, while 

for CMIP5-15 this signal is less clear.   Both ensembles indicate for JJA and SON a shift towards high 

frequency of days when the jet occupies the northern position, and fewer days in the southern and 

central positions.    

 

We explore changes in projected mean temperature and precipitation by assigning each day to one of 

9 ‘jet regimes’ based on jet strength and latitude, as indicated by the dotted lines in Fig. 7. These 9 

regimes result in distinct geographical distributions of precipitation and temperature, particularly 

when the jet is strong. Changes in mean temperature and precipitation can subsequently be 

disaggregated into those associated with the change in jet regime frequency (dynamical changes) vs 

those resulting from a change in the rainfall or temperature pattern associated with that jet regime.  

 

This is illustrated for the PPE-15 ensemble mean in Fig. 8, in which the pattern of mean rainfall change 

associated directly with the changes in jet regimes can be seen in the left hand column. The increase 
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in days in autumn/winter where the jet is strong/north at the expense of days south/weaker jets lead 

to increases in mean rainfall in Northern Europe, particularly the UK, and decreases in mean rainfall in 

southern Spain. Decreases in rainfall in southern Europe as a result of fewer days when the jet sits in 

the southern positions are evident throughout the year. 

Figure 8. Contributions to projected changes in UK temperature (top) and precipitation (bottom) of changes in jet regime 

frequency (left), changes in pattern of temperature or precipitation (middle) and total change in temperature and 

precipitation (right) for members of PPE-15 (orange, with standard member in red) and CMIP5-13 (blue). 

The pattern of mean rainfall change that is not associated with the jet regime (the thermodynamic 

component), are shown on the right in Fig. 9.  These changes remain larger than the dynamical 

component, and as expected represent a pattern of summer drying and winter rainfall increases that 

might be expected as a result of a warmer atmosphere. However, we should expect that this ‘residual’ 

change also still includes some degree of dynamical changes not captured by the 9 jet regimes. 

 

The ensemble mean in Fig. 9 hides the regional variations across the ensemble which are of interest 

for identifying storylines which capture model uncertainty.  The ensemble spread in these quantities 

is summarized for the UK as an example region in Fig CM3. For the UK, the changes in distributions of 

jet regimes contributes to the spread in DJF rainfall changes.  

 

Further work on these jet regimes will explore suitable metrics for selecting members that encapsulate 

a wide range of plausible changes with direct relevance to Europe, for example, adding a dimension 

to the criteria for sampling for approaches such as the sub-selection in section 3.3 of this report). The 

development of the jet latitude and strength ‘regimes’ and their comparison with historical 

simulations is being prepared for publication (McSweeney et al, in prep). 
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EXPLORING CHANGES IN THE SUMMER NAO AS A DRIVER OF REGIONAL PRECIPITATION CHANGES -

- The SNAO is defined as the leading EOF of summer SLP variability in the North Atlantic/European 

Sector, which has been shown to modulate precipitation in Northwest Europe (including the UK) and 

the Mediterranean. More specifically, a positive SNAO index represents high average summer pressure 

anomalies over the UK, consistent with lower-than-average seasonal rainfall.  Blade et al. (2012) 

demonstrated that a projected upward trend in the SNAO in CMIP3 models can be considered to be a 

driver of a consistent signal of precipitation decreases in northwest Europe, and also a source of 

uncertainty given that the magnitude of SNAO change, and the magnitudes of summer rainfall 

decreases vary significantly across members. Following the methodology of Blade et al. (2012), we 

have assessed the extent to which the PPE and CMIP5-13 models represent the SNAO and its 

teleconnection to European summer precipitation, and explored the relationship between the 

magnitude of projected changes in SNAO and UK summer rainfall. 

 

 
Figure 9. PPE-15 Ensemble mean change in seasonal mean precipitation disaggregated into the components arising as a 

result of changes in frequency of jet regimes (dynamical changes) (left) and those arising from changes in precipitation 

associated with each jet regime (thermodynamical changes) (right). 
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Most models in both PPE and CMIP5-13 simulate a spatial SLP pattern with SNAO-like north-south 

dipole (ensemble mean SLP patterns are shown in Fig. 10 top row, individual models are not shown), 

and the telconnection patterns shown in Fig. 10 second row indicate that the ensembles broadly 

capture the negative correlation between SNAO and July-August (JA) precipitation over the UK and 

NW Europe (although this is not the case for all the members with the ensembles, several less-realistic 

members within both ensembles position the southern dipole too far west into the Atlantic, and or fail 

to represent the teleconnection with UK rainfall). However, what is also noted in Blade et al. (2012), 

and is also demonstrated here for the PPE is the weaker than observed positive correlation 

relationship between Mediterranean rainfall and the SNAO, suggesting that models are missing or 

underestimating processes which link the large-scale circulation with Mediterranean rainfall.  

 

Given that the models capture both broadly realistic SNAO-like variability and this has been shown to 

explain a significant proportion of the variability in UK JA precipitation, we might expect to see similar 

relationship between changes in the SNAO and JA precipitation in future projections, as reported by 

Blade et al. (2012). Indeed, Fig. 10 bottom, indicates that most members of the three ensembles 

project a positive shift in the SNAO, and that those with larger increases in SNAO tend to display larger 

reductions in JA rainfall, although there remains significant scatter in the relationship. Notably, the 

larger increase in SNAO may partially explain the greater summer drying in PPE relative to CMIP5-13.  

 

The SNAO therefore offers  useful ‘axis’ along which to sample from global models ensemble in order 

to capture spread in European rainfall, and we note that capturing the range of plausible changes in 

the SNAO may require us to look beyond the CMIP ensembles - e.g. by drawing also on the UKCP PPE 

in order to include members with the largest SNAO changes and related precipitation changes.  Further 

exploration of the relationship between the SNAO and Mediterranean rainfall clearly warrants further 

investigation in order to understand the missing teleconnection and its implications for projections of 

future mediterranean rainfall. 
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Figure 10. Top Row: The leading EOF as of JA SLP anomalies expressed as spatial patterns of correlation between leading 

PC in the region 40N-70N, 90W-30E and SLP at each point for the period 1950-2010. ‘Obs’ refers to the HadSLP2 dataset 

(Allan and Ansell, 2006). For the two model ensembles, the SNAO timeseries is defined for each model using either the 

first or second EOF depending on which most closely resembles the observed SNAO pattern.  Spatial correlation patterns 

are calculated for each model, based on each model’s own SNAO-timeseries, and subsequently averaged to give an 

ensemble mean. Second Row: Teleconnection between SNAO timeseries and JA-seasonal mean precipitation.  

Teleconnection patterns are calculated for each model based on their own SNAO-timeseries and precipitation and 

subsequently averaged across the ensemble. Bottom: Relationship between projected changes in the SNAO and changes 

in mean JA rainfall in the GC3.05-PPE, CMIP5-13 and ESPPE. Figure published in Murphy et al. (2018).  
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3.5 Science part 4 - Selecting regional simulations tailored to user’s needs and setting small 

(CPRCMs) and large (GCMs) ensembles into uncertainty context (SMHI) 

 

INTRODUCTION AND RATIONALE -- As climate change awareness is rapidly increasing and adaptation 

and mitigation measures are developed and taken into action, stakeholders are in need of holistic 

climate information on regional and local scales. With holistic information we mean to transfer to 

stakeholders a deeper understanding of climate simulations which goes beyond single numbers of 

raising temperature levels. In this way the stakeholder community learns more about what climate 

simulations are, not perfect forecasts but rather a range of possible futures. For many years the climate 

community has been producing more and more climate simulation and data. From being overwhelmed 

the climate impact community grew into better understanding of the impact/meaning of climate 

simulations and the multitude of models. Still the sheer amount of available simulations to choose 

from has been a hurdle in discussions with decision makers. To guide users of climate information 

through the increasing amount of data, a model selection process was developed to condense the 

ensemble size of regional climate models. The process uses two moments: first the focus and interest 

of the climate data user is carved out and then a smaller subset of the ensemble calculated with the 

aim to keep the variability within user relevant climate information (Wilcke and Bärring, 2016) -- 

Providing information about the uncertainty of climate projections is deemed essential in 

communication with stakeholders. This requires large ensembles of climate simulations. However, 

CPRCMs are computationally too expensive and time consuming to downscale larger ensembles of 

GCMs and RCMs. Furthermore, in many projects and experiments the selection of which GCMs to 

downscale occurs based on various reasons, like financial, political, but also practical reasons, e.g. data 

availability as not all GCMs provide data on model levels which is needed for downscaling. Therefore 

in order to evaluate the background uncertainty, we set the CPRCM simulations produced within EUCP 

WP3 into the context of the RCM and GCM ensembles downscaled by the CPRCMs, and the other 

available RCM ensembles from EURO-CORDEX and PRINCIPLES (meaning all on esgf available RCM data 

on EUR-11 domain) and GCM ensemble of CMIP5. The EURO-CORDEX ensemble as well as the CMIP5 

ensemble and subsets of those are widely used by climate impact researchers and stakeholders.  

 

SELECTING REGIONAL SIMULATIONS TAILORED TO USER NEEDS -- The first moment is a dialog with 

the data users to provide understanding on both ends of what is needed (climate indices relevant for 

the user) and what is possible to deliver (a number of climate simulation output data that is still 

descriptive of the whole ensemble of simulations). This dialog and building of understanding is 

essential for a user tailored product. That means agreeing on e.g. seasons and regions which are 

focussed on in the study, climate variables like precipitation and indices like number of frost days, as 

well as distilling out if climate change signals are relevant or rather period averages and for which 

periods.  



 

EUCP (776613) Deliverable D2.4  Page 25 
 

Figure 11. Scheme of the selection process from climate model outputs and climate model ensemble (matrix A, climate 

variables and indicators calculated for each ensemble member) via the hierarchical clustering to the selection.  

The second moment is to calculate those indices for each ensemble member and transform the 

resulting matrix into an uncorrelated variable space using singular vector decomposition. This matrix 

is the information which we base hierarchical clustering on. Like the methods described before, we 

try to group similar behaving simulations together to then select just one out of each group. 

To support the decision on the optimal number of clusters, we introduced a step to calculate mean 

silhouette values for each number of cluster possibilities and chose the number of clusters/subsets 

with the largest distance to each other. 

 

CASE STUDY 1 -- In a case study analysed together with EUCP WP4 we did a clustering for hydrological 

modelling. Here we followed the user’s suggestion of indices which were all based on daily 

precipitation values. They covered annual and seasonal climate change signals (mid century) averaged 

for three regions in Europe. Fig. 12 shows the hierarchical clustering tree for 32 regional simulations. 

 

The suggested selected simulations are: 

● NCC-NorESM1-M downscaled by CLMcom-ETH-COSMO-crCLIM-v1-1 

● MOHC-HadGEM2-ES downscaled by CNRM-ALADIN63 

● ICHEC-EC-EARTH downscaled by KNMI-RACMO22E 

● CCCma-CanESM2 downscaled by CLMcom-CCLM4-8-17 

● MOHC-HadGEM2-ES downscaled by IPSL-WRF381P 

● IPSL-IPSL-CM5A-MR downscaled by IPSL-WRF381P 

● IPSL-IPSL-CM5A-MR downscaled by IPSL-INERIS-WRF331F 
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Figure 12. Hierarchical tree of the EURO-CORDEX ensemble starts at the bottom to cluster together those models that 

are the closest together, finding “family” similarities until the top most level. The closeness of relation (no physical 

relation, only statistical relation regarding variability within the ensemble) is indicated by the Ward distance on the left 

axis. 

 

CASE STUDY 2 -- In a second case study the model selection was part of building a decision basis for 

downscaling a subset of a large single model ensemble (S-LENS, EC-EARTH) with an expensive 

convection permitting model. Here we framed the idea to pre-select members which trigger possible 

different types of convective precipitation events. The background to that was the user’s need to 

reduce the ensemble for being able to save only relevant model levels for further downscaling. The 

indices were based on climate change signals of convective precipitation and temperature for summer 

and winter seasons to mid century with focus on regions in Sweden. The clustering resulted in 12 

distinct clusters and therefore 12 selected ensemble members which will add to an informed decision 

on which members to save model levels for and possibly downscale on very high resolution. 

 

 

SETTING HIGH-RESOLUTION CPRCMs IN THE CONTEXT OF THEIR DRIVING RCMS AND GCMS -- The 

first step is to see where in the RCM and GCM variability space the chosen CPRCM simulations are 

placed. This is done for the Alpine domain as defined by WP3. The Alpine domain is the common region 

for which all institutes had to contribute. Therefore the CPRCM ensemble is largest for this region. The 

intention is to visualize how well the distributions of GCMs and RCMs are sampled.  
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Figure RW3 shows the change signals for 99th percentile of summer (JJA) precipitation (y-axis) against 

temperature (x-axis) for the Alpine region as defined by WP3. The change signals were calculated for 

the CMIP5 ensemble (orange dots, rcp 8.5) plus an EC-EARTH member from KNMI that the KNMI-

CPRCM simulation downscaled (Appendix Table A3a). For the RCM ensemble on EUR-11 domain (blue 

triangles) we used simulations produced by European projects (EURO-CORDEX, PRINCIPLES, and 

REKLIES), plus the intermediate RCMs which were downscaled by the CPRCMs, that are not necessarily 

on EUR-11 but on similar domains and resolutions (Appendix Table A3b). The change signals of CPRCM 

simulations from WP3 (Appendix Table A3c) are shown as green crosses. The change signal is 

calculated from two periods available for the CPRCMs, the historical period 1996 - 2005 and the 

scenario (rcp8.5) period 2041 - 2050. The variability in the GCM (79 members) and RCM (64 members) 

ensembles is comparable. The CPRCM ensemble captures most parts of the temperature range but 

only the middle part of the precipitation distribution, remembering that this is the 99th percentile of 

the summer precipitation and temperature, respectively. Beside the key-variables (temperature and 

precipitation) the intention is to evaluate more climate variables and in particular indicators which are 

relevant for climate impact applications. The intention is to provide a ground and more comprehensive 

picture to users of very high resolution climate data. 

 

In the second step the CPRCM simulations are connected to their driving RCM and GCM simulations. 

In this way the impact of the different downscaling steps on climate change signals becomes visible. 

For this step it is desirable to have an as large as possible ensemble of CPRCM simulations. WP3 used 

a common domain over the larger Alpine region that all institutes have to contribute to with their 

simulations. This Alpine domain is the initial focus of the model chain study. Fig. 14 shows the 99th 

percentile of summer temperature and precipitation change for the Alpine region and shows the same 

values as Fig. 13, however, only for the models that are part of the CPRCM downscaling chain (see 

Appendix Table A3c). One intermediate simulation (RCM) is missing only due to lack of accessibility to 

the data. Still the CPRCM (ETHZ-2) and GCM (MPI-ESM-LR_r1i1p1) is included in the figure to show the 

effect of the downscaling even with less details. For the 99th percentile of summer precipitation and 

temperature change no common pattern  in how regional models affect the GCM signals becomes 

visible. The same holds true for the average change (not shown here). However, from this figure a 

certain narrowing of the precipitation distribution becomes evident. This is interesting because 

precipitation is naturally the focus variable when studying convective permitting climate simulation 

data. 
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Figure 13. Climate change signal (2041-2050 minus 1996-2005) for the Alpine region (defined by WP3) for 99th percentile 

for summer (JJA) precipitation and temperature. Calculated for CMIP5 ensemble including KNMI-EC-EARTH-r14i1p1 

(orange dots), EUR-11 ensemble (called EURO-CORDEX* as extended by other projects; blue triangles) including the 

RCMs that were downscaled by the CPRCMs but are not available on ESGF, and the CPRCMs from WP3 (red crosses). 

The RCMs and GCMs belonging to the downscaling chain of CPRCMs are enlarged. 

In addition to the Alpine region, each WP3 modelling institute agreed to simulate over at least one 

more domain in Europe. Due to computational, financial and temporal limits those non-Alpine 

domains are covered by CPRCM ensembles with sizes ranging between 2 and 4 members. By studying 

the statistical changes in the variability space introduced by the downscaling steps a possible 

extrapolation of the variability can be made towards non-Alpine domains. The knowledge about the 

ensemble variability and the impact of downscaling on that variability, gained from the study over the 

Alpine region, lays the ground for improving uncertainty information in regions with very small 

ensembles or only single downscaling simulations. 

 

CASE STUDY - GCMs - Large ensembles -- Another attempt to analyse uncertainty in an applied study 

was carried out for the summer 2018 heatwave in northern Europe. Two long-lasting high-pressure 

systems led to an extended and very warm summer season over Scandinavia. To assess the chances 

of such a heatwave happening, and find a possible attribution to climate change, we used 4 large 

single-model GCM ensembles and one multi-model ensemble (CMIP5). The large ensembles provide 

an enhanced sample size of 20580 summers representing summer over the last 70 years. The 

uncertainty or spread of the model ensembles enabled us to narrow down information about extreme 

events. By analysing the probabilistic distribution functions of monthly and seasonal (May to August) 

mean temperatures (Fig. 15) as well as some heat indices (not shown), it became clear that the 

observed 2018 summer (in particular the months of May and July) had been extremely warm. The 
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large ensembles indicate that such high temperatures could have happened in pre-industrial times, 

but at a lower frequency of occurrence. We can clearly see an increase in probability for such warm 

summers over Scandinavia even from the recent past (1951-1980) to present day climate (1989-2018) 

(Wilcke et al. 2020). 

 

 
Figure 14. In principle as Fig. 13 but reduced to the downscaling chain of the CPRCMs. The downscaled GCMs (dots) give 

the color code and are connected to RCMs (triangles) that downsale them. The RCMs are further connected to their 

downscaling CPRCMs (crosses). 

Wrap up -- In the first study climate scientists and climate data users engaged form detailed 

information for applying user tailored model selection. This is a way to reduce the ensemble size 

focussing only on specific interests of a user, meaning climate indicator. The selection tool shows a 

possibility to provide more user-friendly climate data without missing out on the uncertainty aspect 

of climate modelling. As in practice, the selection process is not always feasible or applicable, a 

“hindcast” analysis was carried out to set a selected subset of GCMs and downscaling CPRCMs into the 

context of the larger GCM ensemble. The case is taken from WP3 where the selection of GCMs was 

guided by CPRCM compatibility and institutional preferences.  

The third case shows a storyline approach. An extreme event, the hot Scandinavian summer in 2018, 

is analysed regarding its relation to the changing climate but also its place in different climate model 

ensembles uncertainty space. The case study shows the importance of larger ensembles and to not 

neglect extreme members of an ensemble and that sensible and informed selection processes are 

necessary. 
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Figure 15. Probability distributions for monthly average temperature anomalies, calculated for 1861–1890 (dashed) and 

1989–2018 (solid) against 1981–2010 for the southern half of Sweden, for the individual months of May–August as well 

as seasonally pooled for JJA and MJJA respectively. The bars in the upper part of each panel are a guide to compare the 

positions of percentiles for each ensemble and period. The opacity of the bars indicates (in steps) the 90th, 95th, 99th, 

and 100 percentile ranges marked on the uppermost bar. Ensemble distributions are a kernel density fit, whereas the 

histogram for E-OBS is based on actual data. The observed year 2018 for respective months or season is indicated by the 

vertical dotted black line.  
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3.6 Science part 5 - Quantifying the minimum number of ensemble members (CMCC)  

 

INTRODUCTION -- How large an ensemble of climate simulations needs to be for different purposes is 

a challenging issue within the modeling community. We take advantage of a single model initial-

condition large ensemble (SMILE), to investigate the number of ensemble members needed to 

characterize a given climate signal or to fully represent internal variability. The recent literature shows 

clearly how the needed ensemble size generally depends on the application of interest. In a climate 

change perspective, Deser et al. (2012) report the minimum ensemble size required to reproduce a 

statistically significant change compared to present-day climate in the global average temperature and 

precipitation: in the first decade less than 10 members are needed for temperature, while for 

precipitation 40 members are not enough. Maher et al. (2018) estimate that at least 30 ensemble 

members are needed to robustly estimate El Niño Southern Oscillation (ENSO) variability. Looking at 

the stratospheric response to volcanic eruption, Bittner et al. (2016) report that the number of 

ensemble members needed to capture changes in the 10 hPa zonal wind after a strong eruption 

crucially depends on latitudes, with much more members needed at high latitude (around 40) than at 

the southward flank of the jet (less than 10). These are just a few examples, clearly showing how the 

number of members required to represent a given process fundamentally depends on the intensity of 

the signal and/or on the related internal variability, which are properties intrinsic to the considered 

phenomenon. Here we will present two different approaches for the estimate of the proper ensemble 

size to represent a given climate signal within a certain range of uncertainty, and we will provide some 

case studies. The general idea is to subsample the full ensemble in order to characterize its properties 

as a function of its size. A specific focus will be placed on how this estimate varies with a varying extent 

of the considered spatial domain. The aim behind this study is twofold: whilst it may enhance the 

exploitation of the existing climate prediction products, helping end-users to define the optimal 

(sub)ensemble size needed for a specific purpose (e.g., to study climate variability on a specific target 

area, or to define the proper input for a tailored impact study), it also provides an informative 

framework for climate scientists (e.g., in the design phase of new experimental efforts). 

 

METHOD 1 (SUBSAMPLING  APPROACH) -- The MPI-Grand Ensemble (MPI-GE; Maher et al., 2019) is 

a 100-member ensemble from the MPI-Earth System Model in the low-resolution setup (MPI-ESM1.1), 

forced with the CMIP5 simulation protocol in the historical period (1850-2005) and in the scenario 

period (2006-2099). In this framework, for the scenario period, we adopt the RCP8.5 concentration 

pathway. By construction in a SMILE all the members include the same external forcing and have been 

produced by the same numerical model (i.e. no structural or scenario uncertainty is considered), hence 

the differences across them are due to the intrinsic chaotic nature of the climate system. The full 

ensemble provides the best estimate of the probability distribution characterizing a given variable or 

field: our goal is to study how many ensemble members are needed to retain the same information. 

In other words, we want to test the sensitivity to the ensemble size of the estimate of the distribution 

parameters. To do so, an iterative subsampling is applied: for each subsample size (k = 2, 3, 4…99) an 

extraction without replacement is performed N times (N = 1000), obtaining N couples, N triplets and 

so on.  As emphasized by Milinski et al. (2020), who recently proposed an analogous approach, the 

choice to resample without replacement implicitly reproduces what happens when a limited number 

of ensemble members is produced running a set of model simulations. For each subsample size, the 

subsampling procedure generates N synthetic ensembles over which the different ensemble 

distribution parameters may be computed, obtaining, for example, N estimates for the ensemble 
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average, for the ensemble variance and so on, which will be proper of the considered subsample size. 

From these N estimates and for each subsample size k, a distribution of values can be defined, the 

spread of which is a measure of the error in taking the subsample of size k instead of the full ensemble. 

To test our confidence in adopting a reduced ensemble size to estimate the chosen parameter, we can 

compare the spread of these distributions (i.e. the 5th - 95th percentile range), with some arbitrary 

threshold, representing the acceptable error for the user, given the specific instance under 

examination. In this framework, this analysis is applied looking at climate signals averaged over a 

specific domain. Different regions and scales are typically affected by different degrees of variability, 

impacting in turn the requirements in terms of ensemble members even when analyzing the same 

signal (e.g. the forced response due to anthropogenic forcing). In order to obtain some indication of 

how the spatial aggregation influences the ensemble size requirement, starting from the chosen target 

region a set of subdomains is defined over which the field of interest is averaged, and the subsampling 

analysis is repeated. 

 

ENSEMBLE SIZE AND SENSITIVITY TO THE SPATIAL SCALE -- a case study -- The proposed approach 

has been adopted to evaluate the number of ensemble members needed to characterize the climate 

change signal over the Euro-Mediterranean domain. In particular, the focus is on the DJF 2 m 

temperature and precipitation change over the period 2041-2060 compared to present day 

climatology (i.e. 1995-2014). The target domain is reported in Fig. 16a: three different sectors have 

been evaluated, centered over selected grid points (61.25N, 13.75E; 51.25N, 6.25E; 41.25N, 3.75W) in 

Northern, Central-Western, and Southern-Western Europe. For each target domain, the subsampling 

exercise has been performed, allowing to define how many ensemble members are needed to reach 

a spread of the subsample distribution comparable to a given acceptable error. By means of a set of 

decreasing values for the acceptable error, it is possible to build an empirical relationship linking the 

desired level of uncertainty with the needed ensemble size (Figs. 16b,c). The curves show an 

exponential-like behavior as emphasized by the exponential fit plotted over the empirical points for 

both absolute changes in temperature (Fig. 16b) and relative changes in precipitation (Fig. 16c). Here 

different colors identify different sectors, while the shading is used to label different spatial scales. 

Generally, the larger the domain, the smaller the number of ensemble members required to reach the 

same acceptable error. The regional behavior crucially depends on the variable of interest: while the 

ensemble size needed to reach the same acceptable error decreases moving southward for 

temperature, the opposite holds for precipitation. For 2m temperature, the bundles of curves for the 

different regions are clearly separated in clusters of different shape, proxy of the different variability 

affecting the regional climate change signal (i.e., the less ensemble members are needed to reach a 

certain acceptable error, the higher the agreement across the ensemble – as shown for example for 

the southern sector compared to the northern one). On the contrary for precipitation a less evident 

clustering can be noticed. Indeed, at finer spatial scales the precipitation signal is generally 

characterized by a reduced spatial coherency and a more pronounced variability regardless of the 

region considered.  
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Figure 16. a) domains and subdomains over the European sector for the subsampling exercise: the colored dots 

represent the central grid point for each domain (in orange: 61.25N, 13.75E – Northern Europe domain, NEU; in green: 

51.25N, 6.25E – Central-Western Europe domain, CWE; in blue: 41.25N, 3.75W – Southern-Western Europe domain; 

SWE).  b) Empirical relationship between acceptable error and number of ensemble members (dots) and exponential fit 

(dashed lines) for DJF 2m temperature change (2041-2060 versus 1995-2014) over the different domain (in red NEU; in 

green CWE; in blue SWE). Darker colors correspond to larger subdomains (typical spatial scale in the legend on the right). 

c) the same as b) for DJF relative precipitation change (2041-2060 versus 1995-2014).  

METHOD 2 (ENSEMBLE MODE DECOMPOSITION)  -- In the following we will present a methodology 

to detect how many ensemble members are needed to represent the same modes leading the 

variability in the full ensemble, always taking advantage of the MPI-GE. The Empirical Orthogonal 

Function (EOF) analysis is a widely used approach to detect and separate spatial modes of variability 

and their temporal variation in a dataset (e.g., Hannachi et al., 2007). The input data are typically 

organized in a data matrix where each row corresponds to a time series (i.e., the temporal behavior 

of the field) for each grid point. From such data matrix, once properly scaled and standardized, it is 

possible to derive the covariance matrix for the field; its eigenvectors and eigenvalues provide 

respectively the orthogonal mode of spatial variability and a measure of the amount of variance 

explained by each mode. It is important to notice that by construction EOFs are orthogonal, implicitly 

hindering the direct interpretation of the obtained patterns as real physical modes. Nevertheless, the 

canonical EOF analysis is commonly considered as a powerful method for the analysis of huge datasets 

and for dimensionality reduction. In this framework we want to extend the canonical EOF approach 

and apply it over the entire ensemble. The ensemble data matrix is then defined by aligning in each 

row (i.e. for each grid point of the considered domain) the time series for each ensemble member. If 

we denote with N the size of the full ensemble, with S the number of grid points, and with T the number 

of available time steps, the data matrix defined in this way has dimension S x NT.  Anomalies have 

been previously computed subtracting to the full field its own climatology for each ensemble member, 

and the data matrix is normalized dividing these anomalies at each grid point by the standard deviation 

computed over time and over the ensemble. The EOF modes computed from such a data matrix 

describe the variability included in the full ensemble. Once this reference result is achieved, we can 

adopt an iterative subsampling to check how many ensemble members are needed to obtain the same 

set of modes. In other words, the ensemble is subsampled extracting randomly without replacement 

an increasing number of members from the full ensemble, and for each subsample the EOF analysis is 

repeated. In this way a set of spatial patterns for each subsample size is obtained, comparable to the 

one computed for the full ensemble.  

 

ENSEMBLE SIZE AND MODE OF VARIABILITY - a case study -- Here we show an example, looking at 

the modes of variability of the winter (DJF) 500 hPa geopotential height in the historical period (1964-

2005). Our benchmark is represented by the full ensemble variability, and here we will focus on the 
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first four modes (Fig. 17a), explaining around 55% of the total variance. The first EOF shows a wavy 

signal crossing the North Pacific and the North American continent, resembling the Pacific North 

American pattern (PNA e.g., Wallace and Gutzler, 1981). The second mode presents a clear annular 

structure with perturbations of opposite sign over the polar region and in the surrounding zonal ring 

around 45N. This pattern can be interpreted as the tropospheric counterpart of the Arctic Oscillation 

(Thompson and Wallace, 1998), generally defined as the leading EOF of the wintertime sea-level 

pressure field. The higher order modes are characterized by wave-train patterns crossing the whole 

hemisphere, more difficult to be interpreted as potentially affected by the orthogonality constraint 

implicit in this kind of decomposition. Once the full ensemble EOFs have been defined, the 

subsampling has been performed, and the EOF modes have been computed for a set of random 

subsamples of increasing size. The aim is to find the minimum number of ensemble members needed 

to represent the same modes of variability included in the full ensemble. The results of this 

subsampling exercise are summarized in Fig. 17b. To compare the full ensemble modes with the 

analogous ones derived from subsamples of different size the pattern correlation has been computed. 

Since the EOF patterns are defined up to sign, the absolute value of the pattern correlation is plotted. 

To reduce the potential impact of the subsampling choice, the random extraction is repeated 50 times 

for each sub-ensemble size and for each of these repetitions the pattern correlation value is computed 

(reported as dots in Fig. 17b). The average behavior of the pattern correlation (solid lines in Fig. 17b) 

shows that the first two modes converge very rapidly to the full ensemble value, with a pattern 

correlation greater than 0.95 with 5 members. In contrast, around 30 ensemble members are required 

to represent the higher order EOFs (i.e., to have pattern correlation over the 0.95 threshold for both 

the third and the fourth mode). It should be noticed (not shown) that the amount of explained variance 

for the four EOFs remains constant across the different subsample sizes. This result, together with the 

behavior of the pattern correlation, reveals that the subsampling does not revert the separation of the 

modes. 

 
Figure 17. a) First four leading EOFs and the respective explained variance for the full-ensemble 500 hPa DJF geopotential 

height in the historical period (1965-2004). b) Pattern correlation between the EOF in subsamples of different size and 

the EOF in the full ensemble. The dots represent the pattern correlation value for independent extraction, while the 

solid line is the average pattern correlation value. The dashed black line represents a pattern correlation value equal to 

0.95. 

FINAL REMARKS --  Two different methods have been presented, providing an assessment of the 

minimum number of ensemble members needed to characterize the average signal over the region of 

interest or to properly represent complex structures in space and time (i.e., the EOF modes). In the 

first case, the strength of the proposed subsampling approach is that it can be easily generalized and 
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adapted, taking into account how the subsampling impacts on different distribution parameters (e.g., 

higher order momenta, standard deviation etc.). In the example reported here the climate change 

signal, defined as changes in the ensemble mean, has been examined obtaining as result a pronounced 

regional and variable dependence. Likewise, the same approach can be applied to some measure of 

ensemble spread (e.g., the ensemble variance), which by construction can be considered as a proxy 

for internal variability, when SMILEs are taken into account. Recently a similar methodology has been 

presented by Milinski et al. (2020); in this framework we have extended the analysis by considering 

how the extension of the spatial domain over which the signal is defined affects the choice of the 

ensemble size. In this sense, the choice of the target domain and of the relative subdomains is crucial 

and depends on the physical properties of the signal of interest. For example, when looking at the 

tropical Pacific SSTs or at the North Pacific jet (not shown), we have adopted a zonally elongated target 

region and subdomains of gradually reduced zonal extension, but constant meridional one. In the 

second instance, the definition of the EOF modes over the ensemble allows to focus on more complex 

signals and hence to retain more physical information, with the due caution in the interpretation 

related to the intrinsic orthogonality constraint. It can be demonstrated that the covariance matrix 

obtained from our choice in the definition of the data matrix is equivalent to the ensemble covariance 

matrix in Wills et al. (2017), where the ensemble EOFs are defined as the starting point for the 

computation of patterns of low-frequency climate variability and change. The example presented here 

focuses on the Northern Hemisphere large-scale winter circulation patterns: while the first two modes 

are extremely stable across the subsampling, the higher order EOFs show an enhanced variability, as 

can be noticed from the spread of the dots in Fig. 17b. However, the average pattern correlation 

converges relatively fast. Finally, it should be noticed that there is the potential to generalize this 

approach to overcome the well-known limitations implicit in the EOF analysis, by extending to the 

ensemble more general mode decomposition techniques (e.g., the rotated EOF). 

3.7 Science part 6 - Pseudo-global warming experiments to create event sets of future 

weather  (KNMI) 

  

INTRODUCTION--The impact of recent west-central European drought events on society and nature 

once again triggered questions regarding the role of climate change in the occurrence and extremity 

of such events and on what to expect under continuing global warming. While the probability of heat 

waves in this region is demonstrated to have increased in response to anthropogenic climate change, 

the attribution of extreme drought conditions is profoundly difficult by the complexity of processes 

contributing to wide-spread drought conditions. 

 

In the contribution presented here the impact of global warming on soil moisture drought severity in 

west-central Europe is investigated by employing so-called pseudo-global warming experiments, 

which set the 1980-2020 period against the background of a globally warmer world. The “future 

analogues” of present-day drought episodes allow us to investigate changes in drought severity 

conditional on the day-to-day evolution of the atmospheric circulation in the historical period. The 

purpose is to provide robust, physically consistent scenarios of what global warming entails for 

extreme droughts like 2018, and for the full range of wet to moderately dry years in the historical 

period. As such this approach is intended to complement projections of changes in drought risk derived 
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with the conventional climate modelling approaches, giving an explicit reference to collectively 

experienced real world events. 

 

METHODS--The simulations are performed with the RCM KNMI-RACMO2 at 12 km resolution. External 

forcings for aerosols and greenhouse gases have been implemented according to CMIP5 prescriptions. 

The model domain is centered over west-central Europe, and covers most of Europe. The analyses are 

based on two sets of RCM simulations: a present-day simulation (REF), driven by ERA5 re-analysis 

fields, and pseudo-global-warming (PGW) simulations corresponding to a 2 K global warming. Both 

sets consist of a climate run covering the period 1980-2020 (climREF and clim+2K). The PGW-

simulation is essentially a rerun of the REF-simulation, but with perturbed lateral boundary conditions 

(surface pressure and 3-dimensional temperature, humidity, and wind) and perturbed sea surface 

temperature. The perturbations are determined from global climate model (GCM) projections as the 

monthly mean climate change signal in the 30-year period in which the target global warming level is 

reached with respect to present-day conditions (1991-2020). With that a large part of the climate 

signal is captured, but the day-to-day evolution of the synoptic-scale circulation in the PGW 

simulations remains essentially determined by the reanalysis forcing and is therefore very similar to 

the sequence seen in the present-day (or control) simulation. 

 

Since climate models differ in their regional climate response, we have applied perturbations from 

three different GCM initial-condition ensembles: a 16-member EC-EARTH v2.3  ensemble produced at 

KNMI, a 4-member HadGEM2-ES  ensemble and a 3-member MPI-ESM-LR  ensemble from the CMIP5 

archive, referred to as, respectively, EC, Had and MPI. The perturbations are derived from initial-

condition GCM ensembles rather than from a single simulation per GCM to obtain a robust estimate 

of the forced climate response. All GCM ensembles are run under the high-end emission scenario 

(RCP8.5). Fig. 18 shows some features of the perturbations for the three GCMs. Obviously there are 

large similarities in climate change response between the three ensembles, but details like e.g. the 

response in pressure gradient and the shape of vertical temperature response are different. 

 

 
Figure 18. Top row: Surface pressure perturbations corresponding to 2K global warming derived from EC-EARTH (left), 

HadGEM2 (centre), and MPI (right) for JJA. Bottom row: profiles of temperature and relative humidity derived from the 

same GCMs. “All” refers to all grid cells enveloped by the solid line indicating the edges of the RCM-domain; “landN” 
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refer to land points north of 50ON; “landS” to cells in between 35 and 50 ON. The shading indicates the spread across the 

regions. 

Hereafter, soil moisture drought conditions in the model are based on the exceedance of a seasonally 

varying threshold of the soil wetness index (SWI) of the top 1 m of the soil, where SWI is defined as 

the soil moisture availability scaled between field capacity and permanent wilting point. A soil 

moisture drought event is defined as the consecutive period in which SWI is below the 5th percentile 

determined from the reference simulation. The drought severity is expressed in terms of the drought 

deficit volume (units: mm d), which integrates drought duration and drought intensity. It is calculated 

as the cumulative SWI deviation from the 5th percentile threshold over the drought episode. The 

drought intensity is defined as the drought deficit volume divided by the drought duration. 

 

The analysis is carried out for a designated region consisting of the larger river basins in west-central 

Europe that discharge in the North Sea, namely the Rhine, Meuse, Scheldt, Ems, Weser and Elbe. These 

river basins are part of the area where the 2018 soil moisture drought episode (Fig. 19) was most 

severe and lasted longest. 

 

MAIN RESULTS—A comprehensive analysis of the 2018 west-central European drought event and its 

projection in a warmer climate within the framework of PGW is discussed in Aalbers et al. (2021), 

included in Appendix A4. Here we present results for the 2018 drought event in the context of the 

reference period 1980-2020 both for present-day conditions and for future conditions in a +2K globally 

warmer world under PGW. 

 

As seen in Fig. 19, the 2018 drought onset and ending under global warming occurs at roughly the 

same time as for the present-day event. The drought duration under PGW is thus hardly affected or 

even decreases, while the drought intensity shows a moderate increase (8 mm or 22%), resulting in an 

increase in the drought deficit volume of 20% under 2K warming. The Had and MPI-perturbed 

simulations show stronger increases in drought severity (+39%, resp. +25%) owing to decreasing 

precipitation in spring, respectively weaker increases in spring and stronger decreases in summer. 

 
Figure 19. Time series of the 2018-anomaly in temperature (left) and soil wetness index (right) anomaly wrt the present-

day climatology for the reference simulation and three PGW-simulations with perturbations from different GCMs 

assuming 2K global warming. The shading represents the spread of an 11-member initial condition ensemble specifically 

set up for the year 2018 (Aalbers et al., 2021), thin lines are climatological responses w.r.t. the reference simulation. 

Yet, there are summers in the 1980-2020 period with much stronger responses in soil moisture than 

2018. This is illustrated in Fig. 20 showing the drought intensity and duration for all years in the 1980-

2020 period for the reference simulation and each of the PGW-simulations. Under present-day 
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conditions 2018 stands out in both drought intensity and duration. The drought duration of 2003 was 

similar in length but the mean intensity was about three times smaller. Under +2K global warming the 

drought duration and, to a larger extent, the intensity of a substantial number of years considerably 

increases, reflecting the on average drier soil moisture conditions in summer and autumn. This is seen 

in particular for the years 2020, 1983, and 1989 (the latter year was not qualified as drought under 

present-day conditions), all three by far exceeding the present-day 2003 drought severity. The 

evolution of the drought anomaly of the five driest years is shown in Fig. 21, indicating that the 

behaviour among these years was rather different. The reason why 1983 and 1989 respond so strongly 

compared to other years with similar soil moisture levels under present-day conditions is discussed in 

Appendix A4. 

 
Figure 20. Scatter diagram of drought duration and drought intensity for the reference simulation and for each of the 

PGW-simulations EC (left), Had (center), and MPI (right). 

As discussed in Appendix A4 the frequency of more severe droughts than the present-day 2003 

episode more than doubles, occurring on average once every eight years. This outcome is irrespective 

of the GCM supplying the perturbations, although details of the responses are different, e.g. the 

response in drought intensity based on clim+2K|MPI is stronger than for the other two GCMs. 

 
Figure 21. Soil wetness anomaly for five distinct years including 2018 that showed a profound drought response. 

Perturbations in the right panel are from EC-EARTH. 

SUMMARY -- In this contribution we have examined the implications of global warming for future 

drought severity in west-central Europe, by employing PGW-experiments for the 1980-2020 period. 

The control experiment has been carried out with the RCM KNMI-RACMO2 forced by large-scale 

information from the ERA5 reanalysis. The PGW-experiments essentially repeat the control 

experiment after perturbing the large-scale driver with climate change information from GCM 
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projections. The advantage is that results are less sensitive to GCM biases in the reference climate 

state and that, to a large extent, the effect of mean climate change is captured. As such, changes in 

droughts can be directly related to real world events and their societal impact, which make the results 

very tangible and therewith useful for climate change communication. 

 

Under 2K warming almost all years in the 1980-2020 period show a decrease in soil moisture 

availability in (spring), summer and autumn, consistent with results based on transient climate model 

simulations (next section). Compared to the change in the climatology, the soil moisture response in 

west-central Europe under the circulation of 2018 is relatively modest, primarily because evaporation 

in 2018 is already strongly moisture-constrained in the present-day simulation. Also, the increase in 

(potential) evaporation owing to much higher temperatures is partially compensated by an increase 

in precipitation. The 2018 soil moisture deficit volume in the PGW-experiments increases, primarily 

due to the increase in drought intensity. The drought duration is barely impacted owing to increasing 

precipitation in spring, autumn and winter. It is emphasized that the increase in drought severity in 

2018 co-occurs with an increase in local summer temperature which is considerably larger than 2K 

global warming. 

 

Finally, a very interesting outcome is that the response in temperature and soil moisture drying can 

be particularly large for years with moderately dry conditions in the present-day climate, implying that 

years that went unnoticed under present-day conditions may emerge as very dry years in a warmer 

climate. Using present-day thresholds, the drought frequency strongly increases under +2K warming, 

with 2019/2020-like deficit volumes occurring on average every three years, 2003-like deficit volumes 

every eight years, and under strongly enhanced temperatures. This shows that even without taking 

into account changes in the frequency of atmospheric blocking conditions, the probability for severe 

drought events in west-central Europe is strongly enhanced. 

3.8 Science part 7 - Selecting weather events from initial condition large ensembles (KNMI) 

 

INTRODUCTION-- In the immediate aftermath of an extreme weather or climate event, from different 

parts of society questions arise on the role of climate change in creating this particular event and what 

future events might look like taking into account further climate change (Van Oldenborgh et al. 2021). 

These questions matter from a societal perspective, as the answers inform people on the 

consequences of climatic changes on local weather, but can also inform policy makers on whether 

adaptation measures are required to cope with potentially more severe weather events that may 

occur because of climate change.  

 

Event-based scientific research, motivated by a specific observed or theoretical weather event, can 

provide answers to these questions. Such research can take many forms, but all benefit from the fact 

that the human mind is more impressionable to concrete and relatable information than general 

information (Shepherd et al. 2018). For climate information this means that information on specific 

future events, especially when related to observed events in the recent past, is better received and 

more actionable than general climate scenarios. ‘Storylines’ of events that could be in a warmer future 

are thus of societal use; hence the development of scientific methods for creating such storylines is of 

interest.   
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To transpose an observed extreme event to a warmer future, a few climate modelling routes are 

possible. The most common is to perform a nudging or pseudo-global warming (PGW) experiment, in 

which the model is constrained to reproduce for atmospheric circulation of the event (see e.g. science 

part 6 of this deliverable), however, it is unclear what is the best way of perturbing thermodynamics 

or boundary conditions (Silmann et al. 2019). Alternatively, comparable events can be selected from 

unconstrained model experiments. Here we describe an explorative study on a new method for 

creating physical storylines of possible future events that are similar to an observed weather event of 

choice using this second ‘selection’ approach. What follows is a conceptual description of the proposed 

methodology, a proof-of-concept where we apply this method to the extreme north-western 

European drought of 2018, and some considerations of this method in relation to existing ones. The 

peer-reviewed journal article describing this study is included in Appendix A5. 

 

METHODS-- From a large collection of similar runs from a single climate model (i.e. a Single-Model 

Initial Condition Ensemble’, SMILE), different runs sampling different phases of climate internal 

variability, we aim to select events that resemble the observed event in a pre-defined way. If we can 

satisfactorily do this for the present-day climate, and we find enough comparable simulated events to 

the observed event, we can assume the same selection metrics or methods would work in future 

climates as well. The selected simulated events can then be compared across climate states, providing 

information of the influence of climate change on this (type of) event(s). 

 

To ensure robust and reliable information is generated, there are a few things to test and consider. 

Does the climate model realistically represent the local/regional climate, including the event of 

interest? An assessment of model biases is required, though often difficult for the particular extreme 

event of interest given the rarity of occurrence and hence limitations of observed data. Second, the 

ensemble of data from which events are selected should be sufficiently large, such that the selected 

simulated events are comparable in terms of return period and severity to the observed extreme 

event. This is important, as the climate change response can be different for events of different return 

periods (Van der Wiel et al., 2018, 2019). Lastly, we note that each event is different in its specifics, no 

two heat waves are exactly the same. This negatively impacts the calculation of the climate change 

response, which can be clouded by event differences due to natural variability. To circumvent this, at 

least partially, we take a composite mean over a few selected simulated events. The composite mean 

event, referred to as an `event analogue’ here, is less influenced by natural variability which improves 

the robustness of the calculation of the impact of climate change on the event (see also section 3.6 on 

internal variability).  

 

PROOF OF CONCEPT-- We apply the above method to study what droughts like the north-western 

European drought of 2018 would look like in warmer future climates. The summer of 2018 was 

exceptionally dry and warm in north-western Europe (Philip et al. 2020; Zscheischler and Fischer, 

2020), this negatively impacted nature and many societal sectors (e.g. agriculture, shipping, drinking 

water, housing). Here we aim to investigate what a drought event like 2018 would look like in a warmer 

future climate. We create ‘storylines’ of future events that are comparable to the observed event, 

which contribute to answering user questions like ‘‘How much worse can droughts get (e.g. more 

severe, more widespread, longer in duration)?’’ and will help policy-makers in the planning of 

adaptation measures. Focus will be on meteorological drought processes. 
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We use a set of three large ensemble experiments from the EC-Earth (v2.3; Hazeleger et al. 2012), 

each consisting of 2000 years of simulated weather for a given state of global climate (present-day, 

pre-industrial +2 ℃ warming, and pre-industrial +3 ℃ warming; Van der Wiel et al. 2019). Three 

metrics (e.g. Fig. 22), each describing a different aspect of the observed drought event are defined, 

and used to select the 20 most similar simulated events in each ensemble (3x 20 out of 2000 summers). 

The simulated analogues of the observed drought of 2018 are then computed by taking the composite 

mean of the 20 selected events. 

   

 

Figure 22. Schematic diagram showing one of three metrics used 

for event selection. Rhine basin mean time series of precipitation 

deficit anomaly [mm] during the 2018 drought shown in blue. 

Metric 1 computes the mean value of the precipitation deficit 

anomaly over the period August up to and including October 

(dotted black line, period shown in grey shading). 

In Fig. 23 we compare the constructed analogue from simulated climate model data to the observed 

event. For the variables shown here (and others, see Appendix A5) the observed event lies within the 

range of selected events. Consequently, the analogue reproduces the event quite well. Lower than 

normal precipitation (Fig. 23c) and higher than normal evapotranspiration (Fig. 23d), resulting in a high 

precipitation deficit (Fig. 23a, meteorological drought) and low plant available soil moisture (Fig. 23b, 

agricultural drought). This was all driven by the presence of persistent high pressure systems, high 

temperatures and sunny conditions. 

 

Given the high degree of similarity between the observed event and the analogue (Fig. 23), we have 

confidence that we can use the analogue approach in conjunction with the EC-Earth large ensembles 

for a study of large-scale droughts in western Europe. We will therefore continue to investigate the 

effects of climate change on potential future events. 

 
Figure 23. Time series of drought-related variables for the observed event in blue and for the event analogue in grey. 

Grey shading indicates the envelope of the 20 individual selected simulated events, black dashed and dotted lines show 

the time series of 2 exemplary individual selected simulated events. Variables shown, anomalies of: (a) precipitation 
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deficit [mm], (b) soil wetness index [unitless], (c) cumulative precipitation [mm], (d) cumulative potential 

evapotranspiration [mm]. The horizontal black bar in (a) shows the event selection period, as shown in Fig. 22.  

The future event analogues (Fig. 24) show that comparable events have higher precipitation deficits 

in 2C- and 3C-warmer climates (Fig. 24). This drought intensification is caused by a decrease of 

precipitation and an increase of evapotranspiration (Fig. 24c,d), and leads to a further drying out of 

soils (Fig. 24b). The intensification of droughts in future climates is found independent of the method 

of event selection, i.e. all metrics show this intensification (Appendix A5). However, the precise timing 

and magnitude of the changes does depend on the method of event selection. For the metric shown 

here (based on high Aug-Oct precipitation deficit), we find that a dry spring kick-starts the drought and 

is temporally compounded by a dry summer. Taken together, this leads to the highest late summer 

deficits in the ensemble dataset. Another metric, focussing on midsummer dry conditions, does not 

show a signal in spring, in that case drought intensification is caused by exceptionally low amounts of 

rain, warm temperatures and sunny skies in June, July, August (Appendix A5).  

 

The changes in drought severity are larger in a world with 3 ℃ warming than in a world with 2 ℃ 

warming. Climate change mitigation will thus help to limit the societal and natural impact of future 

drought events somewhat. Societal adaptation to more severe drought events is inevitable if impacts 

are to be limited to present-day levels. 

 

COMPARE TO PGW METHOD-- In the previous science part of this report (section 3.7) a PGW 

experiment for the same observed drought event was described. Both methods transfer an observed 

extreme event into a warmer future, creating tangible climate change information for users and policy 

makers. And despite the fundamental difference in the two approaches (PGW recreating the exact 

circulation patterns as it occurred, with monthly mean changes in atmospheric circulation, but 

assuming circulation changes on top of those have a minor role; whereas selecting from a SMILE aims 

to find similar impacts, not necessarily forced by the exact observed atmospheric circulation, but 

allowing all forced changes in atmospheric circulation), the results are qualitatively comparable (e.g. 

Figs. 19 and 24b).  

 

 
Figure 24. Time series of drought-related variables for the Drought’18 analogues in different states of global climate. 

Present-day analogue in grey, 2C-warming in yellow, 3C-warming in red. Anomalies relative to the present-day model 

climatology. Variables shown, anomalies of: (a) precipitation deficit [mm], (b) soil wetness index [unitless], (c) cumulative 



 

EUCP (776613) Deliverable D2.4  Page 43 
 

precipitation [mm], (d) cumulative potential evapotranspiration [mm]. The horizontal black bar in (a) shows the event 

selection period. Note all lines are composite means over 20 selected simulated events, as grey lines in Fig. 23. 

 

SUMMARY -- The aim of this work was to develop a method for the creation of event-based storylines 

of future extreme events similar to an observed weather event, by means of selection from large 

ensemble climate model simulations. By means of a case study, we show that this method has promise, 

if the ensemble of choice is of sufficient size to include a couple of comparably extreme events to the 

observed event. More details on the method and results of the case study can be found in Appendix 

A5, which includes a discussion of the balance between increasing event return period and reducing 

noise. 

 

It should be investigated if the proposed approach can be extended to other types of extreme events, 

for example heat waves and large scale extreme rainfall events. Furthermore, for users the translation 

to weather impacts (for drought, e.g. reduced crop yields, drinking water quality and quantity issues, 

irreversible harm to nature reserves) is important, the value of physical climate storylines for this 

community has not yet been fully explored.   
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3.9 List of related EUCP publications 

- Peer-reviewed publications, other reports [all finished] 

- Merrifield, Brunner, Lorenz, Medhaug, Knutti, 2020. An investigation of weighting 

schemes suitable for incorporating large ensembles into multi-model ensembles, 

Earth System Dynamics, 11, pp.807-834. 

- Palmer, Booth, McSweeney, 2021. How does the CMIP6 ensemble change the picture 

for European climate projections?, Environmental Research Letters, 16(9), p. 94042. 

- Van der Wiel, Lenderink, De Vries, 2021. Physical storylines of future European 

drought events like 2018 based on ensemble climate modelling, Weather and Climate 

Extremes, 33, pp.100350. 

- Wilcke, Kjellström, Lin, Matei, Moberg, Tyrlis, 2020. The extremely warm summer of 

2018 in Sweden – set in a historical context, Earth Syst. Dynam., 11, 1107–1121.. 

- Planned future publications [submitted, in preparation, in plans, etc] 

- Aalbers and co-authors. The 2018 west-central European drought projected in a 

warmer climate. In preparation. 

- McSweeney and co-authors. Evaluating large-scale circulation for Europe in a coupled 

PPE. In preparation. 

- Sexton, McSweeney and co-authors. Describing future UK winter precipitation in 

terms of changes in local circulation patterns. In preparation. 

- Benassi and co-authors. Sensitivity of climate signals to the ensemble size.  In 

preparation 

- Wilcke, Belusic and co-authors. Setting convection permitting regional simulations 

into the broader RCM and GCM context. In plans. 

- Storyboard science summaries for wider communication: 

- We are in the process of developing online storyboards for some of the methods 

described here. https://eucp-project.github.io/usecases/ 

- Open data or scripts:  

- ClimWIP in ESMValTool  

https://docs.esmvaltool.org/en/latest/recipes/recipe_climwip.html  

- Drought’18 storylines data https://zenodo.org/record/5083160  

3.10 Discussion 

 

This deliverable reports on various scientific projects that either develop new methods for 

subselection or build on existing methods to improve and investigate their fidelity. Here we note some 

common findings and recommendations. 

 

Both Section 3.2 (ClimWIP method) and Section 3.3 (qualitative framework) note that scientific 

thinking in the climate science community has shifted from a historic model-democracy approach (one 

model one vote) to an approach taking into account the individual performance of a model and 

potential dependencies between models. It is further noted that specific model performance is highly-

dependent on the exact use case and metric of choice. This shows the importance of  co-production 

projects, in which the process of model selection for a particular process and the resulting sub-set of 

models are specifically designed for the process of interest. Also Section 3.5 notes “This dialog and 

https://eucp-project.github.io/usecases/
https://docs.esmvaltool.org/en/latest/recipes/recipe_climwip.html
https://zenodo.org/record/5083160
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building of understanding is essential for a user tailored product.” The three sections provide different 

approaches to subselection of models, though we note they share some of the same principles, e.g. 

hierarchical clustering procedures or the aim to keep the variability of the original ensemble in the 

resulting subset.  

 

The second aim of this deliverable is the development of event sets of present and future extreme 

events. Such sets can work towards creating better understanding of future climate change 

projections, because the outcomes are more tangible to users and relate directly to experienced 

weather events. Sections 3.7 and 3.8 describe two independent approaches, one by doing targeted 

RCM experiments for the event of interest, the other by sub-selection from large ensemble 

simulations. The targeted experiments, using the PGW approach, are especially valuable if there is a 

limited number of events of interest, and if circulation changes for the event specifically (on top of 

seasonal mean changes) are expected to be small. If computational constraints make such 

experiments impossible, or if the potential study is more explorative, the sub-selection approach can 

provide a less-computationally intensive alternative. Internal variability in large ensemble simulations 

(see also section 3.6) is then used to select the analogue simulated events. Also here, as with the 

subselection of models, co-production of event sets with users is an obvious next step to improve 

potential usefulness. 

 

Finally, many interlinkages can be found between the presented methods. We will note one possible 

connection. The axes of climate projection uncertainty identified using the methods of Section 3.4, 

can be used to create storylines or scenarios of future climate change. These scenarios can then be 

applied to the PGW method of Section 3.8 to create sets of future weather events that are physically 

consistent with the scenarios of the previous set. In this, and other ways, the subselection methods 

can inform further activities which use ensembles of models or ensembles of experiments, to add 

value to data and ultimately guide the process to create user-oriented actionable climate information.  

4. Lessons Learnt and links Built  

Synergies and links with other deliverables, work packages, and projects: 

- Synergies exist between this task and WP5, most notably WP5’s work on storylines. We have 

been in regular contact, discussing for example how to add-value to our ‘academic’ storyline 

exercise, by including users in a co-production effort.  

Also, we connected with the EUCP multi-user forum, the users (e.g. Anglian Water) were 

interested in our storyline approaches to understand possible future drought events. 

Collaborative continued work to make impact calculations has started. 

- In WP3, the spatial merging methods draw on the principles of sub-selection discussed in this 

report. 

- Outside EUCP, members of WP2 have worked with and advised the EURO-CORDEX community 

on their ongoing work on sub-selecting from the CMIP6 model ensemble for new Euro-

CORDEX simulations. EUCP WP2 has informed this activity directly through both the work on 

the assessment on models for sub-selection (Section 3.3 of this report) and model families 

(Section 3.2). WP2 work on constrained ranges has also been drawn on to inform the sub-

selection of models with respect to the plausibility of observed trends (Ribes et al. 2021). This 
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activity represents a significant step forward in the CORDEX community and will lead to more 

useable EURO-CORDEX projections which better represent the spread in driving global models. 

Lessons learnt in the process of this task: 

- By finalizing outputs well before deadlines, one leaves enough room to identify synergies 

between tasks and work packages. Though we have been very productive within our institutes, 

we have missed face-to-face meetings, which has meant that collaborative work across the 

consortium was made more difficult. 

- Similarly, parallel activities in work packages make it harder to have information from one 

piece of work to feed into another bit of work. 

- The pieces of work described in this deliverable have an academic focus, it would have been 

great had we been able to add a user focus. Such co-production work adds further value, but 

was hampered by the inability to organize in-person workshops.  

- Finally, the pandemic severely limited in-person meetings, making it more difficult to form 

connections and collaborations across institutes. Bi-weekly online coffee meetings, with both 

time for informal chat as for scientific discussion, helped create a team of people within the 

work package. We recommend having such regular meetings, even post-pandemic when 

normal meetings are possible again, it helped us stay in contact and kept communication lines 

short.  
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Appendix 

A1 - Appendix to Science part 1 - Pruning the CMIP5/6 Family Tree using ClimWIP (ETHZ) 

 

A1.1 INTRODUCTION -- This appendix serves as a supplement to Section 3.2 Science part 1 to explain 

the ClimWIP model sub-selection protocol in greater detail. The objective of the ClimWIP sub-selection 

protocol is to provide a recommendation of five climate models from the CMIP5 and CMIP6 archives 

that are best suited for applications requiring realistic estimates of regional European temperature 

and precipitation change. In this appendix, we present an example case and select models best suited 

for projecting mid-century Central European summer climate, surface air temperature (SAT) and 

precipitation (PR), change. Information about the CMIP5 and CMIP6 archives we select from is given 

in Section A1.2. The ClimWIP weighting method is described in Section A1.3, with predictor choice 

considerations detailed in Section A1.4.  Finally, CMIP5/6 family tree construction is expanded on in 

Section A1.5 and the method to select independent high performing models is explained in Section 

A1.6.  

 

A1.2 CMIP5/6 ARCHIVES -- We begin with a full CMIP5/6 ensemble comprised of all models (and all 

initial condition/perturbed physics ensemble members therein) with historical simulations and either 

RCP8.5 for CMIP5 model projections (Taylor et al., 2012) or Shared Socioeconomic Pathway 585 

(ssp585) for CMIP6 model projections (Eyring et al., 2016; O’Neill et al., 2016). The CMIP5 historical 

period is extended from 2005 to 2014 using its RCP8.5 projection to coincide with the CMIP6 historical 

period. RCP8.5 and ssp585 projections anticipate an additional 8.5 W/m2 of radiative forcing above 

pre-industrial levels by the end of the century. The scenarios represent futures in which anthropogenic 

emissions continue largely unmitigated by policy. Recent studies have found that current emissions 

are, unfortunately, on track with this scenario (Schwalm et al., 2020). It is important to note that while 

RCP8.5 and ssp585 projections experience similar aggregate radiative forcing by 2100, they differ in 

terms of the effective radiative forcing of their constituents (e.g., greenhouse gases and aerosols; 

Tebaldi et al., 2020). Because the scenarios are comparable and because ClimWIP was designed to 

compare behavior across generations of model development (Knutti et al., 2017), models are selected 

from a combined CMIP5/6 ensemble. At present, there are 78 CMIP5 and 198 CMIP6 simulations, 

listed in Tables A1a and A1b, that provide all fields necessary for metrics of performance (for Central 

European summer climate applications) and independence: SAT, PR, sea level pressure (SLP), sea 

surface temperature (SST), and the difference between all and clear sky downwelling shortwave 

radiation at the surface or shortwave cloud radiative effect (SWCRE). All fields are remapped onto a 

2.5˚ × 2.5˚ latitude–longitude grid. Additional CMIP6 models and members will be added to 

subsequent publications as fields become available in the CMIP6 next generation archive, a 

standardized repository used by researchers at ETH Zurich and made available upon request (Brunner, 

Hauser, et al., 2020).   
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Table A1a.   CMIP5 Members used, grouped by model ensemble. The highest performer for mid-century Central 

European summer climate applications in each ensemble is highlighted in red with its aggregated distance from 

observed, Di, listed in parentheses. Smaller values of Di indicate higher performance. 

 

A1.3 ClimWIP -- Upon compiling the CMIP5/6 ensemble, we employ the ClimWIP method of model 

weighting to determine the performance and independence of each member listed in Tables A1a and 

A1b.  ClimWIP is the performance and independence weighting scheme first applied in Knutti et al. 

(2017), which has brought together model evaluation and notions about commonalities in model 

development to provide justifiable representations of uncertainty in multi-model ensemble 

projections of future climate (Sanderson et al., 2015, 2017). It has since been integrated into the Earth 

System Model Evaluation Tool (ESMValTool; Righi et al., 2020)) for general open use 

(https://docs.esmvaltool.org/en/latest/recipes/recipe_climwip.html).  

 

Studies involving ClimWIP demonstrate that models that differ significantly from observations in 

relevant ways often exhibit unrealistic future behavior, increasing projection uncertainty (Knutti et al., 

2017; Lorenz et al., 2018; Eyring et al., 2019). Additionally, subsequent work, carried out for WP2, 

highlights how replicate models or multiple members of the same model, two instances prevalent in 

the CMIP5/6 archives, can also affect estimates of multi-model ensemble uncertainty (Merrifield et 

al., 2020). Some of these so-called dependencies (e.g. multiple initial condition members of a model) 

are clear cut, but identifying others (e.g. code sharing) requires an insider’s knowledge of climate 

model development (Knutti et al., 2013). 

 

https://docs.esmvaltool.org/en/latest/recipes/recipe_climwip.html
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Table A1b. CMIP6 Members used, grouped by model ensemble. The highest performer for mid-century Central European 
summer climate applications in each ensemble is highlighted in red with its aggregated distance from observed, Di, listed 
in parentheses. Smaller values of Di indicate higher performance. 

 

To handle the issues associated with model performance and dependence, a straightforward 

Gaussian-based weighting function was proposed by Knutti et al., 2017. In the numerator, the function 

weights a member of a multi-model ensemble according to its distance from observations (over user-

selected relevant climate metrics). In the denominator, the member’s weight is scaled according to 

how similar it is to other models (to account for known and unknown dependencies): 

 
Di defines the aggregate distance from observations of an ensemble member i over a set of 

performance metrics. Sij defines the distance between ensemble member i and all other members of 

the ensemble over a separate set of dependence metrics. Also required are two shape parameters, σD 

to determine how strongly a model will be penalized for lacking historical realism and σS to determine 

how similar two models must be to be considered replicates.  The shape parameters are set by user 

discretion; σD can be estimated through model-based calibration (Brunner et al., 2019), while σS  should 

be set between the largest inter-member (of the same model) Sij and the smallest inter-model Sij as 
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described in Merrifield et al. (2020). Because the shape parameters add additional degrees of freedom 

in the determination of performance and independence, we simply use Di  and Sij to select high 

performing, independent ensemble members rather than the Gaussian-based weighting functions. 

 

In the first selection round, Di is used to select the member deemed highest performing or most 

suitable member for projecting Central European summer climate in each model ensemble within the 

CMIP5/6 archives to create informed “one model, one vote” ensembles. We define model ensemble 

as an initial condition and/or perturbed physics ensemble where members share the same model 

name (e.g. CESM1-CAM5 or ACCESS-ESM1-5) . Model ensembles are grouped in Tables A1a,b with the 

highest performer highlighted in red and its Di given in parentheses. The lower the value of Di, the 

closer a model is to observed and the more suitable it is for Central European summer climate 

applications.  

 

A1.4 PERFORMANCE AND INDEPENDENCE METRICS -- The two keys to the ClimWIP sub-selection 

protocol are to determine if a model is suited to the given task, simulating Central European summer 

climate, and to determine whether a model is suitably distinct from its counterparts. It is important to 

note that no one model is better than all others at simulating every aspect of the climate system; all 

models have strengths and weaknesses. Models deemed high performers in this example may not be 

the best suited to a different region, season, or objective. It is also important to recognize that most 

climate models are not truly independent from their peers; many share a component model (Boé, 

2018), are based on the same predecessor (Masson & Knutti, 2011), or are variants on an institution’s 

base model (Leduc et al., 2016). An awareness of these “model families” is required to avoid choosing 

multiple versions of the same model with  different names and thus losing the advantages of a multi-

model ensemble (Abramowitz et al., 2019). 

 

Within the scope of EUCP’s focus on projected European climate change, we target realistic change in 

June-July-August (JJA) average SAT (Fig. A1) and PR (Fig. A2) between 1995-2014 and 2041-2060 mean 

states (mid-century) in the Central European SREX region (CEU; Iturbide et al., 2020). In Figs. A1 and 

A2, distributions of mid-century JJA CEU SAT and PR change are shown for: 

 

● The full (a) CMIP5 and (b) CMIP6 ensembles listed in Tables A1a,b respectively, 

● the same (c) CMIP5 and (d) CMIP6 ensembles weighted using ClimWIP 

● one-model, one-vote distributions of (e) CMIP5 and (f) CMIP6 using only the highest 

performing (closest to observed) member of each model ensemble within CMIP5 and CMIP6 

(indicated in red in Tables A1a,b). 

 

In each panel, the full ensemble median (dashed gray line) serves as an indicator of how weighting and 

model sub-selection introduces distributional shifts. For JJA CEU SAT change, the full CMIP6 ensemble 

has a higher median warming by mid-century than the CMIP5 ensemble, largely due to its bimodal 

distribution containing models with higher climate sensitivity (more warming in response to doubling 

atmospheric CO2) than previous generations (Flynn & Mauritsen, 2020; Meehl et al., 2020; Zelinka et 

al., 2020). Weighting the full JJA CEU SAT change distributions using ClimWIP reconciles median 

warming in CMIP5 and CMIP6 (Fig. A1c,d; solid black line) to around 2.5˚C, though the weighting does 

amplify the influence of two CMIP5 high performers (GFDL-CM3-r1i1p1 and GFDL-ESM2M-r1i1p1) 

with mid-century warming estimates at the upper and lower ends of the distribution. The one-model, 
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one vote JJA CEU SAT change distributions more closely resemble their full ensemble counterparts in 

median value (Fig. A1e,f; solid black line), but sub-selection notably reduces the higher warming peak 

of the bimodal full CMIP6 distribution. For JJA CEU PR change, both the ClimWIP weighting and model 

sub-selection narrow the spread of the full CMIP5 and CMIP6 distributions towards a median reduction 

of between -0.1 and -0.2 mm/day or around 5-7% of the JJA CEU area average (not shown). In the case 

of CMIP6, the ClimWIP weighting decreases the likelihood of a slight increase in future precipitation in 

the region by eliminating the considerable internal variability present within CMIP6’s two 50-member 

model ensembles, CanESM5 and MIROC6 (Fig. A2d). 

 
Figure A1. Distributions of projected June-July-August (JJA) Central European surface air temperature (SAT) change 

between the periods 1995-2014 and 2041-2060 for a) CMIP5 RCP8.5 projections (78; see Table A1a) and  b) CMIP6 

ssp585 projections (198; see Table A1b) with respective ensemble medians in dashed gray. Panels c) and d) show the 

CMIP5 and CMIP6 ensemble, respectively weighted using ClimWIP with their weighted medians shown in solid black. 

Panels e) and f) show a “one-model, one-vote” distribution of the highest performing (closest to observed) member of 

each model ensemble within CMIP5 (34; see red Table A1a) and CMIP6 (34; see red Table A1b). 

 

Knowledge of the plausible mechanisms underpinning future European temperature and precipitation 

change is required to aggregate a set of metrics to define model performance. For sub-selection, we 

use a mix of local and global climatological predictors we anticipate will form a base set from which 

performance metrics in other regions and seasons can be constructed: 

● Annual average European SAT Climatology;    1950-1969 

● Annual average European SAT Climatology;    1995-2014 

● JJA average Central European Station PR Climatology;    1995-2014 

● JJA average Central European SREX (CEU) SWCRE Climatology;   2001-2018 

● Annual average North Atlantic SST Climatology;    1995-2014 
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● Annual average Southern Hemisphere midlatitude SWCRE Climatology;  2001-2018 

 

 
Figure A2. As in Fig. A1, but for distributions of projected JJA Central European precipitation (PR) change. The same 

ClimWIP weighting strategy is applied to both SAT and PR projections. 

 

Local predictors have the potential to reveal major historical biases that erode confidence in future 

projections: for example, warming biases (perhaps due to biases in local cloud cover) may affect a 

model’s ability to warm a realistic amount in the future. Precipitation biases may lead to moisture 

availability and local land-atmosphere interaction issues. We use two periods of SAT climatology to 

avoid penalizing models for differing from observed by chance due to being in a different phase of 

internal variability (Deser et al., 2012). Regional-scale predictors, such as North Atlantic SST 

climatology, have also been linked to European summer climate variability through interactions with 

atmospheric circulation (Borchert et al., 2019). And finally, with the advent of CMIP6 and models with 

higher climate sensitivity, we incorporate a metric that affects how much a model warms globally (as 

European change is superposed on global change) into the performance predictor set. One such metric 

is SWCRE in low cloud regions of the Southern Hemisphere (Zelinka et al., 2020). Models that 

historically underestimate Southern Hemisphere low clouds decks do not have them present to 

counteract future radiative warming increases associated with the Hadley cell and its “high cloud 

curtain” moving poleward (Lipat et al., 2017; Tselioudis et al., 2016). 

 

Model performance is benchmarked against the following observational estimates, shown in Fig. A3: 

● SAT:  Berkeley Earth Surface Temperature merged temperature (BEST; Rohde et al., 2013) 
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● SLP:  NOAA-CIRES-DOE 20th Century Reanalysis V3 reanalysis (Bloomfield et al., 2018) 

● PR:  European-wide station data based E-OBS dataset (E-OBS; Cornes et al., 2018) 

● SWCRE: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled  

 All- and Clear-Sky shortwave surface flux products (Loeb et al., 2018, 2020)  

● SST:  NOAA Extended Reconstructed Sea Surface Temperature version 5 (Huang et al., 

2017) 

 

 
Figure A3. Observed predictor fields used to determine model performance in the ClimWIP sub-selection protocol; a) 

annual average Berkeley Earth Surface Temperature (BEST) European surface air temperature (SAT) climatology (1950-

1969), b) annual average BEST European SAT climatology (1995-2014), c) June-July-August (JJA) average E-OBS gridded 

Central European station precipitation (PR) climatology (1995-2014), d) JJA Clouds and the Earth’s Radiant Energy System 

(CERES) Central European shortwave cloud radiative effect (SWCRE) climatology (2001-2018), e) annual average NOAA 

Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5) sea surface temperature (SST) climatology (1995-

2014), f) annual average CERES Southern Hemisphere midlatitude SWCRE climatology (2001-2018) 

 

ClimWIP also accommodates more than one observational dataset per field (to represent 

observational uncertainty), and as such, additional datasets may be included in the future publication 

to assess the sensitivity of the selection protocol to the choice of observational dataset(s).  A cosine 

latitude weighted root-mean-square-error distance metric is computed between CMIP5/6 members 

and observations for the performance metrics and the metric distances are normalized by their mean 

value and added together to define the performance Di. For the Central European summer climate 

predictor set listed above, Di ranges from 4.1 to 11.3 with lower values indicating higher performance 

(see Tables A1a,b). 

 

Determining model dependence requires a different strategy and thus different predictors than those 

used to define model performance. Large-scale, long term average values (model properties with 

minimal internal variability) are required to identify initial condition ensemble members as members 

of the same model and to assign degrees of dependence to closely related models. We find that the 

dependence predictor set proposed in Merrifield et al. (2020), annual global land temperature and 
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Northern Hemisphere SLP mean states over the period 1950-2014, effectively groups model 

ensembles within the CMIP5/6 ensemble and is suitable for use in family tree construction. 

 

A1.5 CONSTRUCTING A CMIP5/6 FAMILY TREE -- The second step of the ClimWIP sub-selection 

protocol employs hierarchical cluster analysis to build a model dependence family tree dendrogram 

featuring the highest performing member of each model family (Bar-Joseph et al., 2001; Müllner, 

2011). Euclidean distance, computed from the center of the dependence weight distribution (average-

linkage criteria), is used to group members into model families. The clustering is done iteratively, 

linking the two closest models and so forth, with distances to existing clusters calculated using the 

average of their elements. More dependent models with many “close relatives” have more branches 

across the tree from left to right, while models with fewer similar counterparts have fewer branches.  

 

A1.6 SELECTING INDEPENDENT HIGH PERFORMERS -- To recommend a set of independent high 

performers, a set of  models can be selected which minimize a performance/independence cost 

function described in the main text: 

 
In this instance, we select sets of 5 models, though sets of any size less than the total size of the 

selection pool can be chosen. To reduce computational expense, a performance threshold (a user 

choice) can be set to eliminate lower performing models from the selection pool. Because the cost 

function is computed for all possible 5 model combinations, a smaller selection pool produces 

significantly fewer combinations. In our case, the original 68 models have 10,424,128 possible 5 model 

combinations. We chose a performance threshold of Di < 5 and the remaining 20 models have only 

15,504 possible 5 model combinations. Additionally, the performance threshold can ensure that 

models which are very independent from all other models, for example due to extreme biases with 

respect to observations, do not dominate the cost function.  

The performance term of the cost function is positive and smallest for smaller values of Di, i.e. 

higher performing model combinations. By subtracting the independence term, the cost function gets 

progressively more negative as models differ from one another. the relative importance of these two 

terms is set by the performance/independence trade-off parameter ⍺. The parameter allows a user to 

decide the importance of independence in model selection for their use case; Figure A5 shows the 

sensitivity of the cost function to choice of ⍺.  As ⍺ is varied from 0 to 1, six sets of 5 models, selected 

based on their minimization of C⍺, arise (Fig. A5). For ⍺ = 0, the cost function is based solely on 

performance and selects the 5 highest performing models (Fig. A5; blue): AWI-CM-1-1-MR-r1i1p1f1, 

GFDL-CM3-r1i1p1, MRI-ESM2-0-r1i1p1f1, HadGEM3-GC31-MM-r4i1p1f3, and MPI-ESM1-2-HR-

r2i1p1f1. Two of these models, AWI-CM-1-1-MR and MPI-ESM1-2-HR,  are each other’s closest relative 

in the CMIP5/6 family tree (Fig. 1 main text; orange), and thus not independent. For ⍺ between 0 and 

1, both the performance and independence terms contribute to the cost function. For most 

applications, we recommend the 5 independent high performers given by ⍺ ≈ 0.25 (Fig. A5; red): AWI-

CM-1-1-MR-r1i1p1f1, MRI-ESM2-0-r1i1p1f1, HadGEM3-GC31-MM-r4i1p1f3, NorESM1-ME-r1i1p1, 
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and GISS-E2-1-G-r1i1p3f1. The set retains the highest performer, AWI-CM-1-1-MR, while selecting the 

remaining models from different model families within the CMIP5/6 family tree.   For ⍺ = 1, the cost 

function is based solely on independence and selects the 5 most independent models from the 

selection pool (of  models with  Di < 5). Shown in pink in Fig. A5, the 5 most independent models in the 

set minimize the cost function starting at ⍺ = 0.53:  MRI-ESM2-0-r1i1p1f1, HadGEM3-GC31-MM-

r4i1p1f3, NorESM1-ME-r1i1p1, CESM1-CAM5-r2i1p1, and GISS-E2-1-G-r1i1p3f1. NorESM1-ME and 

CESM1-CAM5 originate from subsequent generations of National Center of Atmospheric Research 

(NCAR) model development (Fig. 1 main text, tan), CCSM4 and CESM1 (Meehl et al., 2013). This 

highlights that model independence cannot be defined solely on the basis of a modelling center 

(Merrifield et al. 2020), as model development can represent a step-change in simulation outcome.  

 
Figure A5. Five recommended members (indicated by star/lines) selected by a performance/independence cost function 

(Equation 2) as a function of the performance/independence trade-off parameter ⍺. The selection method is applied to 

the 20 highest performing members in the CMIP5/6 ensemble (listed on the y-axis; with Di < 5).  Stars bound the values 

of ⍺ in which a model is selected for the set. Colors represent the six unique sets that minimize the cost function as ⍺ 

varies.  At ⍺ = 0, the cost function optimizes solely for performance (blue) and at ⍺ = 1, solely for independence (pink). 

The set of independent high performers we recommend minimizes the cost function  when ⍺  ≈ 0.25 (red). 
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Appendix 

A2 - Appendix to Science part 2 - CMIP6 sub-selection based on an assessment of key performance criteria (MO) 

 

Table A2. Current available flags for assessed CMIP6 models. Flags are based on classifications in section 3.3 of the main text. Note that the table spans multiple pages. 
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Appendix 

A3 - Appendix to Science part 4 - Selecting regional simulations tailored to user’s needs and setting 

small (CPRCMs) and large (GCMs) ensembles into uncertainty context (SMHI) 

 

Table A3a. GCM simulations (rcp85) used in the second study, downloaded from ESGF. 

GCM simulations runs rip GCM simulations runs rip 

ACCESS1-0 r1i1p1 GISS-E2-R-CC r1i1p1 

ACCESS1-3 r1i1p1 HadGEM2-AO r1i1p1 

bcc-csm1-1 r1i1p1 HadGEM2-CC r1i1p1, r2i1p1, r3i1p1 

bcc-csm1-1-m r1i1p1 HadGEM2-ES r1i1p1, r2i1p1, r3i1p1, 
r4i1p1 

BNU-ESM r1i1p1 inmcm4 r1i1p1 

CanESM2 r1i1p1, r2i1p1, r3i1p1, 
r4i1p1, r5i1p1 

IPSL-CM5A-LR r1i1p1, r2i1p1, r3i1p1, 
r4i1p1 

CCSM4 r1i1p1, r2i1p1, r3i1p1, 
r4i1p1, r5i1p1, r6i1p1,  

IPSL-CM5A-MR r1i1p1 

CMCC-CESM r1i1p1 IPSL-CM5B-LR r1i1p1 

CMCC-CM r1i1p1 MIROC5 r1i1p1, r2i1p1, r3i1p1 

CMCC-CMS r1i1p1 MIROC-ESM-CHEM r1i1p1 

CNRM-CM5 r1i1p1, r2i1p1, r4i1p1, 
r6i1p1 

MIROC-ESM r1i1p1 

CSIRO-Mk3-6-0 r1i1p1, r2i1p1, r3i1p1, 
r4i1p1, r5i1p1, r6i1p1, 
r7i1p1, r8i1p1, r9i1p1 

MPI-ESM-LR r1i1p1, r2i1p1, r3i1p1 

EC-EARTH r1i1p1, r2i1p1, r8i1p1, 
r9i1p1, r12i1p1 

MPI-ESM-MR r1i1p1 

FGOALS-g2 r1i1p1 MRI-CGCM3 r1i1p1 

FIO-ESM r1i1p1, r2i1p1, r3i1p1 MRI-ESM1 r1i1p1 

GFDL-CM3 r1i1p1 NorESM1-ME r1i1p1 

GFDL-ESM2G r1i1p1 NorESM1-M r1i1p1 

GFDL-ESM2M r1i1p1 KNMI-EC-EARTH r14i1p1 

GISS-E2-H-CC r1i1p1   

GISS-E2-H r1i1p1, r1i1p2, r1i1p3, 
r2i1p1, r2i1p3 

  

 

 

Table A3b. List of RCMs and their downscaled GCMs. 
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Table A3c. List of CPRCMs with their respectively downscaled RCMs and GCMs. 

CPRCM name downscaled RCM downscaled GCM 

CLMcom-CMCC-CCLM5-0-9 CLMcom-CMCC-CCLM5-0-9 EC-EARTH 

CNRM-AROME41t1 CNRM-ALADIN63 CNRM-CERFACS-CNRM-CM5 

ETHZ2-COSMO-pompa_5.0 COSMO-pompa_5.0 MPI-M-MPI-ESM-LR 

GERICS-REMO2015 GERICS-REMO2015 MPI-M-MPI-ESM-LR 

HCLIMcom-HCLIM38-AROME HCLIM38-ALADIN EC-EARTH (r12) 

ICTP-RegCM4-7 RegCM4-7 mohc-hadgem2-es 

IPSL-WRF381CE WRF381CE IPSL-CM5A-MR 

KNMI-HCLIM38h1-AROME KNMI-RACMO23E KNMI-EC-EARTH (r14, r13) 
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Appendix 

A4 - Appendix to Science part 6 - Pseudo-global warming experiments to create event sets of future 

weather  (KNMI) 

 

The below is a paper in preparation for submitting to a scientific journal. Note that the numbering of 

figures and tables within this paper (i.e. Appendix A4) is independent from the rest of the deliverable, 

Figure 1 in the text here refers to Figure 1 of this appendix. 

 

The 2018 west-central European drought projected in a warmer climate 

 

E.E. Aalbers, E. van Meijgaard, G. Lenderink, H. de Vries, B. van den Hurk 

 

A4.0 ABSTRACT 

Projections of changes in extreme droughts are associated with large uncertainties, owing to the 

complex genesis of droughts, uncertainty in the atmospheric dynamics, such as the representation of 

atmospheric blocking conditions and land-atmosphere feedbacks in climate models. In this study we 

investigate the impact of global warming on soil moisture drought severity in west-central Europe by 

employing so-called pseudo- global warming (PGW) experiments, which set the 1980-2020 period 

against the back- ground of a globally warmer world. We thus target changes in drought severity 

conditional on the day-to-day evolution of the atmospheric circulation in the historical period, by 

providing future analogues of present-day drought episodes. 

The 2018 west-central European drought is the most severe drought in the 1980-2020 period in this 

region. Under 1.5K, 2K and 3K global warming, the 2018 drought episode experiences strongly 

enhanced summer temperatures, but a fairly modest response in soil moisture availability and small 

changes in drought duration. This is owing to strongly constrained evaporation in summer under 

present-day and future conditions, and increasing precipitation in spring, autumn and winter. For 2018 

conditions, the drought severity, defined as the cumulative soil moisture deficit volume during a 

drought episode, increases with 17% to 34% under 1.5K to 3K global warming. In the 1980-2020 period 

under +2K warming however, increasing evaporation and decreasing summer precipitation result in a 

strong increase in drought frequency and severity, with 2019/20-like drought conditions occurring 

once every three years. Strikingly, many years without noticeable droughts in the historical period 

show very strong drying responses, and exceed 2003-like drought conditions under +2K global 

warming, accompanied by regional temperatures considerably exceeding +2K. 

Our results thus provide examples of future droughts, illustrate the strongly enhanced drought risk in 

west-central Europe under global warming, even without taking into account the full range of 

dynamical responses to climate change, and may contribute to the formulation of effective adaptation 

strategies. 

 

A4.1 INTRODUCTION 

The impact of recent west-central European heat waves on society and nature (Vogel et al., 2019, 

Rösner et al., 2019, Kramer et al., 2019, Krikken et al., 2019, Schuldt et al., 2020, Beillouin et al., 2020) 

once again triggered questions regarding the role of climate change in the occurrence and extremity 

of drought events (Kornhuber et al., 2019, Yiou et al., 2020, Philip et al., 2020, Zscheischler and Fischer, 
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2020) and on what to expect under continuing global warming (Toreti et al., 2019, Kornhuber et al., 

2019, Hari et al., 2020). 

The 2018 growing season was the compound hottest-and-driest ever recorded in west- central Europe 

(Toreti et al., 2019, Zscheischler and Fischer, 2020), owing to a sequence of anomalously persistent 

high pressure systems over eastern, northern, and central Europe between April and October (Bissolli, 

2019, Sluijter et al., 2018), associated with subsi- dence, clear sky conditions and generally low relative 

humidity and moisture advection (Sousa et al., 2017, 2018), against the background of globally 

increasing temperatures (Philip et al., 2020, Vogel et al., 2019). Temperatures were anomalously high 

over almost the entire European continent (Vogel et al., 2019, Kornhuber et al., 2019), but the 

precipitation deficit was particularly intense and long lasting in west-central Europe, where it built up 

from April/May until November, only intermittently interrupted by intense but small-scale short-

duration rainfall events (Bissolli, 2019, Sluijter et al., 2018). This led to soil desiccation and extremely 

low levels of groundwater tables (Brakkee et al., 2021) and river discharge in the west-central 

European river basins (Brunner et al., 2019, Kramer et al., 2019). 

 

Although the probability of heat waves in this region is demonstrated to have increased in response 

to anthropogenic climate change (Stott et al., 2004, Vogel et al., 2019, Vautard et al., 2020), the 

attribution of extreme drought conditions is complicated by the complexity of processes contributing 

to wide-spread drought conditions (Shepherd, 2014, Trenberth et al., 2014), while statistics are 

complicated by the scarcity of independent drought events owing to their long timescale and large 

spatial scale. Intense drought conditions are governed by persistent patterns of atmospheric 

circulation with low moisture advection into the region of interest. Trends over recent years suggest 

in- creases in the frequency and/or persistence of such circulation conditions (Coumou et al., 2014, 

Kornhuber et al., 2019), but there are no significant long-term trends in meteorological (precipitation) 

drought events in this region (Gudmundsson and Seneviratne, 2016, Hanel et al., 2018, Manning et al., 

2019, Philip et al., 2020). Nevertheless, observation- and model-based studies find decreasing trends 

in summer water availability (precipitation minus evaporation) which are attributable to global 

warming (Padrón et al., 2020), increases in the frequency and/or severity of soil moisture droughts 

(Hanel et al., 2018, Philip et al., 2020) and in long-duration compound hot-and-dry events (Manning 

et al., 2019). This is owing to increasing trends in atmospheric evaporative demand with global 

warming in the predominantly energy-constrained evaporation regime in west-central Europa. 

 

Under further increasing greenhouse-gas concentrations, climate projections agree on a general 

pattern of year-round decreasing precipitation in the Mediterranean and increasing precipitation in 

northern Europe, with the drying/wetting transition zone shifting north in summer under higher levels 

of global warming (Jacob et al., 2014, Coppola et al., 2021, Aalbers et al., 2018). For west-central 

Europe small decreases or increases are projected for spring and summer, but results are uncertain 

and depend on e.g. the RCM/GCM resolution and generation (Jacob et al., 2014, Coppola et al., 2021, 

Van der Linden et al., 2019), biases in the mean climate state in the reference period (Orth et al., 2016, 

Van der Linden et al., 2019) and the ability of climate models to realistically represent land-surface-

atmosphere coupling (Vogel et al., 2018, Selten et al., 2020) and atmospheric dynamics (Shepherd, 

2014, Woollings et al., 2018). Studies using large climate model ensembles find further decreases in 

soil moisture, with strongest responses in summer and autumn (Ruosteenoja et al., 2018, Van der 

Linden et al., 2019) and increases in the frequency and severity of (multi-year) drought episodes 

(Samaniego et al., 2018, Toreti et al., 2019, Hari et al., 2020). 
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In this study the contribution of global warming to the increase in drought severity is being addressed 

by putting the 1980-2020 historical period in the context of a glob- ally warmer world. We hereby 

follow a pseudo global warming (PGW) approach ((Schär et al., 1996, Attema et al., 2014, Prein et al., 

2017, Kröner et al., 2017, Lenderink et al., 2019)), by which we create “future weather analogues” 

(Hazeleger et al., 2015, Shepherd, 2019, Sillmann et al., 2019, Van der Wiel et al., 2021, Wehrli et al., 

2020) of present-day summers. We focus on the 2018 drought episode for its recent occurrence and 

severe impact. Based on regional climate model (RCM) simulations driven by reanalysis data, we first 

explore the atmospheric drivers and soil moisture evolution of the 2018 event under present-day 

conditions. We repeat this analysis after perturbing the same synoptic conditions in order to match 

the climate change signal derived from three different global climate model (GCM) projections and for 

several warming levels. In addition to diagnosing the response in atmospheric drivers, the soil moisture 

evolution and the severity of the 2018 drought event, we also evaluate the position of this 2018 event 

in the 1980-2020 period, both for present-day and for future conditions of a single warming level. 

 

The purpose of this work is to provide robust, physically consistent scenarios of what global warming 

entails for both extreme droughts, and for the full range of wet to moderately dry years that occurred 

in the historical record. It is intended to complement projections of changes in drought risk derived 

with the conventional large-ensembles approaches, giving an explicit reference to collectively 

experienced real world events. 

 

A4.2 MODEL AND METHODS 

A4.2a -- Regional climate model 

All simulations are performed with the RCM KNMI-RACMO2 (Van Meijgaard et al., 2012), run at 12km 

resolution, with 40 vertical model levels. External forcings for aerosols and greenhouse gases have 

been implemented according to CMIP5 prescriptions (Collins et al., 2013). RACMO2 uses the land 

surface scheme HTESSEL (Balsamo et al., 2009), which employs four soil layers with a total depth of 

2.9 m. At the bottom of the soil column, boundary conditions are specified as zero-heat flux and free 

drainage. Each land-grid cell includes separate tiles for high and low vegetation (16 vegetation types), 

bare soil, snow on low vegetation/bare soil, snow beneath high vegetation and intercepted water, for 

which the energy and water balances are solved individually. The tile fractions vary with interception 

storage, snow cover and a fixed seasonally changing vegetation cover (leaf area index climatology). 

The model domain is centered over west-central Europe, and covers the majority of Europe. 

 

A4.2b -- Experimental setup 

The analyses are based on two sets of RCM simulations: present-day simulations (REF) and pseudo-

global-warming (PGW) simulations. Both sets include a climate run covering the period 1980-2017 for 

present-day conditions and 2K global warming (climREF and clim+2K) and an 11-member initial-

condition ensemble for the period 2018-2020 for present-day conditions and 1.5K, 2K and 3K global 

warming (2018REF and 2018+nK; n=1.5,2,3). By creating an ensemble, random small-scale variations 

in the weather (i.e. due to internal variability within the RCM domain) are sampled, yielding a more 

robust assessment of future changes. This is especially relevant for the analysis of single weather or 

climate events. Tab. 1 provides an overview of all simulations. The simulations are detailed in the 

following subsections. 
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 Table 1. Model simulations 

 
 

Present-day simulations First, RACMO is run continuously over the period January 1st 1979 – January 

1st 2018, with initial conditions and lateral and sea surface boundary conditions from the ERA5 

reanalysis dataset (Hersbach et al., 2020). The sea surface and lateral boundary conditions are updated 

every 3 hours. The first year is used as spin-up, leaving the period 1980-2017 as the reference period 

for the present-day climate (climREF). The 11-member ensemble for 2018-2020 (2018REF) is created 

by running RACMO 11-times over the period 2018-2020, reinitializing the atmospheric state to the 

ERA5 reanalysis at January 1st for member 1, January 6th for member 2, up to February 20th for 

member 11. Unless indicated otherwise, throughout this paper analyses are based on the ensemble 

mean values of the 2018REF ensemble. The simulated 2-m temperature and precipitation are 

evaluated against the gridded observational dataset E-OBS v20.0e (Cornes et al., 2018). 

 

PGW-simulations To examine the impact of global warming, all simulations are rerun, but with 

perturbed initial (soil moisture, soil temperature, snow cover), sea surface (temperature and sea ice 

extent) and lateral boundary conditions (temperature, humidity, wind), representing the change in the 

mean climate state in a globally warmer world. We impose a single 2K global warming to the 1979-

2018 simulation (clim+2K), and three different global warming levels to the 11-member 2018 

ensemble (2018+1.5K, 2018+2K and 2018+3K) to examine the sensitivity of the 2018 response to the 

warming level. The perturbations are determined from global climate model (GCM) projections as the 

3-dimensional monthly mean climate change signal in the 30-year period in which the target global 

warming level is reached with respect to present-day conditions (1991-2020), see Tab. 1. These include 

thermodynamic changes, changes in the vertical temperature and humidity profile, and monthly mean 

changes in the circulation. Therewith we capture a large part of the climate change signal (Brogli et al., 

2019,b), but the day-to-day evolution of the synoptic-scale circulation, i.e. the sequence of weather 

systems entering the model domain in the PGW simulations remains essentially determined by the 

reanalysis forcing and is therefore very similar to the sequence seen in the present-day (or control) 

simulation (Brogli et al., 2019,b, Prein et al., 2017). 

 

Since climate models differ in their regional climate response given a certain level of global warming, 

we derive three sets of perturbations from three different GCM initial- condition ensembles: a 16-

member EC-EARTH v2.3 (Hazeleger et al., 2010) ensemble produced at KNMI, a 4-member HadGEM2-

ES (Collins et al., 2011) ensemble and a 3-member MPI-ESM-LR (Giorgetta et al., 2013) ensemble from 

the CMIP5 archive (Taylor et al., 2012), referred to as respectively EC, HAD and MPI. The perturbations 

are derived from initial-condition GCM ensembles rather than from a single simulation per GCM to 

obtain a robust estimate of the forced climate response (Deser et al., 2010, Fischer et al., 2014, Aalbers 
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et al., 2018). All GCM ensembles are run under the high-end emission scenario (RCP8.5). HAD exhibits 

the strongest warming in spring, MPI shows the strongest warming and drying in summer. 

 

A4.2c -- Indicators and variables 

We identify soil moisture drought conditions based on the exceedance of a seasonally varying 

threshold of the soil wetness index (SWI, (-)) of the top 1 m of the soil. The top 1 m of the soil is where 

– in HTESSEL – vegetation has the highest root density and where water deficiencies have the strongest 

link to agricultural drought (Seneviratne et al., 2012). The SWI is the fraction of plant available water 

in the top 1 m of the soil, defined as the soil moisture availability (θ, (mm)) scaled between field 

capacity (θfc) and permanent wilting point (θpwp) (Eq. 1). The SWI is better suited for aggregation 

over areas with different soil types than θ itself. θfc and θpwp are fixed characteristics per grid cell. 

        (1) 

A soil moisture drought event is defined as the consecutive period in which the soil moisture conditions 

are drier than the 5th percentile threshold of the 1980-2017 SWI (SWI5th). SWI5th is calculated for 

every calendar day based on 14-day smoothed SWI values (Trenberth et al., 2014). We apply the same 

drought threshold for the present-day and PGW conditions, to benchmark the warming induced 

changes to present-day conditions. We express the drought severity in terms of the drought deficit 

volume (unit mm d), which integrates drought duration (unit d) and drought intensity (unit mm). It is 

calculated as the accumulated difference between θ5th and θ over the drought episode. The drought 

intensity is defined as the drought deficit volume divided by the drought duration. 

 

In the analyses we use the atmospheric evaporative demand synonymously with potential evaporation 

(Ep), the evaporation that would take place assuming unconstrained conditions with respect to soil 

moisture availability and vapor pressure deficit. The computation of evaporation in HTESSEL uses a 

resistance approach based on Jarvis (1976), for each individual land cover tile, see ECMWF (2009). To 

obtain a potential evaporation measure that is fully consistent with the simulated actual evaporation, 

it is diagnosed in a parallel calculation within RACMO2, using the prevailing atmospheric conditions, 

but with resistance functions accounting for soil moisture availability in the top layer (soil 

evaporation), soil moisture availability in the root zone (transpiration) and vapor pressure deficit 

(transpiration) set at 1, representing unconstrained conditions. See for details supplementary material 

B. 

 

A4.2d -- Study area 

To study the local intensification of the 2018-drought episode and accompanying heat wave we have 

selected the larger river basins in west-central Europe that discharge in the North Sea, namely the 

Rhine, Meuse, Scheldt, Ems, Weser and Elbe. These river basins are part of the area where the 2018 

soil moisture drought episode was most severe and lasted longest, as shown in Fig. 1. 

 

A4.3 -- THE 2018 DROUGHT EPISODE IN THE PRESENT-DAY CLIMATE 

We first present the main characteristics of the simulated 2018 drought episode, and briefly discuss 

the evaluation of the temperature and precipitation anomalies against observations. In Fig. 1a-d maps 

of the simulated 2018 anomaly in 500 hPa geopotential height (contours), temperature, precipitation, 

evaporation and soil moisture are shown for April-June, July-September and October - December. 
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Anomalies are calculated from 2018REF with respect to the 1980-2017 period (climREF). Time series 

of these variables averaged over the west-central European river basins are shown in right panel, Fig. 

1e-h, with observed temperature and precipitation delineated in green. 

 

The high pressure anomalies in (late) spring (AMJ) and summer (JAS), clearly co- occur with the large 

positive temperature anomalies and high precipitation deficits. Averaged over the west-central 

European river basins the simulated (observed) temperature anomaly is +3.1ºC (+2.5ºC) over the 

growing season (April to September), and temperatures exceed the 95th percentile during several 

episodes (Fig. 1e). Most noteworthy are 8 - 22 April, with a 15-day mean temperature anomaly of +6.5 

ºC (+6.0 ºC), and 22 July – 8 August, with an 18-day mean anomaly of +5.9 ºC (+5.1 ºC). The latter 

period was indeed classified as heat wave in the individual countries (Yiou et al. 2019, Sluijter et al. 

2018, Vogel et al. 2019, Bissolli et al. 2019). Apart from a cold bias in winter, the basin-mean simulated 

absolute temperatures are fairly accurate, with a small underestimation with respect to the observed 

1980-2017 mean temperature in the growing season (-0.3 ºC) and overestimation of the extreme 

conditions of 2018 temperatures (+0.3 ºC) in most members of the 2018REF ensemble. 

 

Basin-mean precipitation is anomalously low in each month from February to November, while locally 

anomalously high precipitation occurs in the coastal region in April, and in the western part of the 

basin in August. Averaged over the growing season, the simulated (observed) basin-mean precipitation 

anomaly is -1.1 mm/d or -41% (-37%), with largest, basin-wide deficits in June (-56% (-43%)) and in July 

(-64% (-64%)). Precipitation is slightly overestimated compared to the observations with on average 

0.2 mm/day, both for the climatology and 2018. The higher precipitation amounts could imply an 

overestimation of the soil moisture levels. However, the overestimation of the 2018 summer 

temperature suggests slightly too dry conditions. Apart from model biases, this is possibly related to 

water management and interactions between soil moisture and groundwater in especially the low-

lying coastal areas, which are not taken into account in HTESSEL. 

 

Under prevailing conditions of clear skies, high solar radiation, high temperatures and increasingly dry 

air, the atmospheric evaporative demand is extremely high (+1 mm/d or +35% over the growing 

season, see Fig. 1g). Also the actual evaporation is anomalously high from April up until beginning June, 

modulating the near-surface temperatures (Fig. 1b,g). However, it cannot keep up with the rise in 

atmospheric evaporative demand, owing to quickly increasing soil and canopy resistance against 

evaporation in response to decreasing relative humidity and soil moisture availability (Fig. 1h), and has 

below normal values from mid-June to October. As a consequence, the sensible heat flux strongly 

increases (not shown), which corresponds to an amplified rise in summer and autumn near-surface 

temperatures. Averaged over the growing season, the actual evaporation is slightly smaller than 

normal (-0.1 mm/day or -6%). 
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Figure 1: The 2018 drought episode in simulations (2018REF and climREF) and observations (E-OBS v20.0). Maps 

show the seasonal mean anomaly in 500 hPa geopotential height (contours) and a) near- surface temperature, 

b) precipitation, c) evaporation and d) SWI (top 1 m) from April to December 2018 with respect to 1980-2017 

and the basin-mean time series from January 2018 to March 2019 and climatology for the same variables (e-h). 

Date is masked over sea voor visibility. Potential evaporation is shown along with the actual evaporation (g). 

Observed temperature (e) and precipitation (f) are shown in green. The dark lines and shading show the 2018REF 

ensemble mean, the individual members and the ensemble spread (+/- 1 standard devation). The lighter line and 

shading and the dashed line depict respectively the 1980-2017 mean, interquartile range, and the 5th or 95th 

percentile depending on the variable. Time series are smoothed with a 14-day running mean. 

 

The resulting extremity of the 2018 soil moisture drought is clearly reflected in Fig.1d,h. Anomalously 

low soil moisture levels occur in large parts of central and north- ern Europe, but, consistent with the 

persistent precipitation deficits, conditions are most severe and persistent in west-central Europe. 

Averaged over the west-central European river basins the soil moisture conditions are around normal 

at the start of the growing season, owing to low temperatures and evaporation in March, but soils 

steadily deplete from April onwards, reach severely dry conditions (exceeding the 5th percentile) in 

the second half of May and minimum soil moisture levels in early August. Soil moisture levels remain 

very low throughout the growing season up to end October. Only then precipitation starts to exceed 

the evaporation and soil moisture replenishes, reaching the 5th percentile threshold in the beginning 

of January 2019, after nearly 8 months of severely dry conditions. By then, the soil moisture deficit 
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volume over the nearly 8 months is 8240 mm d, with a mean drought intensity of 36 mm. Normal soil 

moisture levels in the top 1 m of the soil are reached early February 2019. For deeper soil layers the 

winter precipitation is insufficient to fully replenish the soils to normal levels, and the anomalously dry 

conditions persist throughout 2019. 

 

The spread in the 2018REF ensemble is largest in the period end May-early June when spread in the 

location and intensity of precipitation bearing systems can induce relatively strong variability in 

wetness and temperature. While the ensemble spread in temperature is relatively short-lived, the 

ensemble spread in soil moisture reduces more gradually over summer. One ensemble member 

receives relatively high precipitation amounts in May – early June, as well as in July and August (Fig. 

1f). Evaporation in this member is consequently relatively high throughout the summer (Fig. 1g), and, 

hence, temperature is lower than the ensemble mean, ranging from 1.1K in June to 0.3K in September 

(Fig. 1e). 

 

A4.4 -- THE 2018 DROUGHT EPISODE IN THE PRESENT-DAY CLIMATE 

A4.4a -- Climatological mean response to 2K warming 

To provide context to the drought years, we first present the climatological mean response to a 2K 

warming. Fig. 2 shows the seasonal response patterns in geopotential height (contours), near-surface 

temperature, precipitation, (potential) evaporation, and soil moisture over Europe for the EC-

perturbed simulations (see Tab. 1). The annual cycle in the basin-mean response in these and 

additional variables is shown in Fig. 3. 

 

The spatial response patterns exhibit the well-known seasonally-varying warming and drying gradients 

over Europe (e.g. Coppola et al., 2021), showing that the PGW- simulations indeed capture the main 

characteristics of the full climate response (Brogli et al., 2019b). In spring, autumn and winter the 

warming gradient is oriented roughly northwest-southeast, with weakest warming above the British 

Isles and coastal regions adjacent to the Atlantic ocean and Northsea (blue colors represent below 2K 

warming). In summer, warming ranges between around +2.0K over Scandinavia to around +3.0K, 

locally +3.5K in southern Europe. Averaged over the river basins the near-surface temperature 

response varies between +1.4K in May and +2.6K in August (Fig. 3a). Note that the spread around the 

1980-2017 mean response is rather large, especially in JAS, which will be discussed in Sec. 5.2. 

 

The transition zone of increasing precipitation in the north and decreasing precipitation in the south 

is positioned just southwest of the west-central European river basins in spring and autumn and over 

the northeast of the basins in summer, yielding increasing precipitation in winter, autumn and early 

spring, and small decreases in summer for the basin-mean (Fig. 2b, 3e). This co-occurs with nearly 

constant relative humidity and increasing cloud cover in late autumn, winter and early spring, 

decreases in relative humidity and cloud cover in JJASO, and consequent increases in net surface solar 

radiation in this period (Fig. 3b,d). Under conditions of higher temperatures, and enhanced by the 

increase in solar radiation and decrease in relative humidity from late spring to late autumn, the 

atmospheric evaporative demand increases over land throughout the year (Fig. 2c, 3f). Note that 

decreases in evaporative demand are found over the Atlantic owing to a decrease in the ocean-air 

humidity gradient (Laîné et al., 2014). The present-day soil moisture regime in west-central Europe 

allows for year-through increases in actual evaporation in almost all years, with around potential rate 
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in winter and early spring, but smaller than potential in JJASO (Fig. 2d, 3g) resulting in increases in the 

sensible heat flux in the latter period (Fig. 3c). 

 

For the combined river-basin area, the year-through enhanced evaporation and reduced summer 

precipitation lead to enhanced soil moisture depletion in late spring and summer, while in autumn and 

winter increases in precipitation result in a faster soil moisture replenishment. This is enhanced by 

reduced snowmelt in spring and a larger fraction of precipitation falling as rain in autumn (not shown). 

The resulting soil moisture levels in the top 1 m of the soil are around present-day or even wetter 

conditions in winter and early spring, but drier from mid-June to December, with a maximum drying 

response in September (Fig. 2e, 3h). In summer and autumn, the soil moisture availability in deeper 

layers and runoff decrease as well (not shown). However, the response in annual precipitation equals 

the response in annual evaporation, meaning that each winter soil moisture levels in all layers are 

restored to present-day levels, and decreases in summer runoff are compensated by increases in 

winter. 

 

With the amplitude of the response and the position of the drying/wetting transition zone being 

dependent on the GCM, the MPI- and HAD-perturbed simulations give slightly different results, see 

Fig. C2 and C1. The drying/wetting transition zone is located further northeast in all seasons for both 

clim+2K|MPI and clim+2K|HAD. clim+2K|MPI shows a weaker temperature response in spring, but 

much stronger drying and warming in JAS, consistent with a strong response in the geopotential height 

anomaly, relative humidity, cloud cover and solar radiation. The soil moisture depletion and decrease 

in runoff over the growing season are stronger, but so is the soil moisture replenishment, and present-

day soil moisture levels are reached in late winter. Annual runoff however decreases in clim+2K|MPI. 

clim+2K|HAD gives a much weaker increase or even decrease in cloud cover and relative humidity in 

autumn, winter and spring than the EC- and MPI-perturbed simulations, the spring temperature and 

solar radiation response are consequently stronger, and so is the increase in spring evaporation. 

Moreover, increases in precipitation are overall smaller, and soil moisture levels are found to decrease 

earlier in spring and decreases in runoff occur throughout the year. 
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Figure 2: Climatological mean response (1980-2017) to 2K warming in a) the geopotential height at 

500hPa (contours) and near-surface temperature (T, shading), b) precipitation (P ), c) potential 

evaporation (Ep), d) evaporation (E) and e) the soil wetness index in the top 1m of the soil, averaged 

over April - June (AMJ), July - September (JAS), October - December (OND) and January - March (JFM). 

Results are based on climREF and clim+2K|EC. 
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Figure 3: Annual cycle in the basin-mean response to 2K global warming in a) near-surface 

temperature, b) net solar radiation at the surface (Rs,n), c) sensible heat flux (H), d) near-surface 

relative humidity (RH), e) precipitation, f) potential evaporation, g) evaporation and h) SWI in the top 

1 m of the soil. The boxplots show the interannual distribution of the 1980-2017 response, depicting 

the median (black bar), interquartile range (box), the total range with a maximum distance of 1.5 times 

the interquartile range outside the box (whiskers), and outliers (black dots). The red bars delineate the 

response for 2018, the red whiskers the inter-member spread in the response (+/- 1 standard deviation 

(σ∆), with  ). The red dots depict the ensemble mean response for 2019 and 

2020. 
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A4.4b -- 2018 response to 2K warming 

Next we examine the response of the hot and exceptionally dry growing season of 2018 that unfolded 

under persistent conditions of atmospheric blocking. In addition to the boxplots in Fig. 3, we show 

maps of the 2018 response anomaly with respect to the climatological mean response in Fig. 4 for 

2018+2K|EC. Results for 2018+2K|HAD and MPI can be found in supplement C. 

 

 The response in winter and early spring preceding the blocking conditions is very similar to the 

climatological mean response in most variables and results in slightly wetter soil moisture conditions 

at the start of the growing season in April in 2018+2K|EC than in 2018REF. Also in spring, the 2018 soil 

moisture and circulation anomalies appear not to have a strong effect on the response. The 

precipitation response is – despite the application of the 11-member ensembles – rather patchy 

throughout the year (Fig. 4b). Consistent with the climatological mean response, precipitation is found 

to increase in April and May, with relatively strong increases in April. Apparently, the precipitation 

events originate from sources with sufficient moisture supply to sustain these increases. Evaporation 

increases with more than potential rate in these months, but only partially compensates the 

precipitation increase. Despite a small decrease in snowmelt and in- crease in runoff (not shown), the 

top 1 m of the soil is slightly wetter until mid-June in 2018+2K|EC than in 2018REF. 

 

From mid-June onwards strong deviations from the climatological mean response occur for the 

temperature, relative humidity, atmospheric evaporative demand and evaporation responses, 

exceeding the 25th-75th percentile range (Fig. 3a,d,f,g and 4a,c,d).  

 

Decreases in precipitation (June - September) and the weak evaporation response (July - September) 

show that sources of moisture are even more limited in a 2K warming scenario. Precipitation in this 

period is from predominantly continental sources (Benedict et al., 2021), and the evaporation 

response is moisture-constrained throughout Europe  (Fig. 4c,d). 

 

From July to September the temperature response over the basin area and surroundings is amplified 

with respect to the climatological mean response (+3.0K over JAS 2018 compared to +2.4K for the 

climatology). This response anomaly correlates with the anomalously low actual evaporation 

response. Within the basin, evaporation barely increases or even decreases in the period July - 

October, resulting in a further decrease in relative humidity, a modest increase in the sensible heat 

flux (Fig. 3c) and an increase in near-surface temperature. Note that the increase in solar radiation is 

relatively small in June and July (Fig. 3b), given the predominantly clear-sky conditions in 2018REF, and 

that the enhanced temperature response cannot be fully explained by the surface fluxes. Increases in 

heat advection due to stronger warming in upwind regions or enhanced warming through subsidence 

may play a role. 

 

Since the response in summer evaporation in the west-central European river basins is close to zero, 

the JAS soil moisture response is small compared to most other years in the 1980-2020 period (Fig. 

3h), and is almost completely determined by the precipitation decrease. The pattern of the soil 

moisture response anomaly strongly correlates with the precipitation response anomaly in this period 

(Fig. 4e). Percolation to deeper soil layers and runoff decrease in this period as well (not shown). In 

autumn and winter, moderate precipitation increases replenish the soils to 2018REF levels in 

December/January, in the top 1 m of the soil and in deeper layers. 
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A4.4c -- Sensitivity to the level of global warming 

To examine the sensitivity of the results to the level of global warming, we additionally show the 

temperature and soil moisture conditions under +1.5K and +3K warming (Fig. 5). The temperature 

response is fairly linear with global warming under the increasingly moisture-constrained conditions, 

yielding temperature anomalies (i.e. deviations with respect to climREF) of +8.1K, +8.9K and +10.2K 

under respectively 1.5K, 2K and 3K warming during the July/August heat wave, and +4.8K, +5.4K and 

+6.5K for the growing season mean. The soil moisture depletion over the growing season decreases 

(increases) for lower (higher) levels of global warming, resulting in slightly less (more) intense drought 

conditions from mid-June onwards. The increase in soil moisture depletion over the growing season is 

mainly driven by stronger decreases in precipitation over JAS for higher levels of global warming, see 

Fig. 5g, in which we compare the hydrological budget changes over AMJ and JAS for the three warming 

levels. In AMJ, precipitation increases are weaker (stronger) under 1.5K (3K) warming, but so are the 

evaporation in- crease, snowmelt decrease and runoff increase, resulting in a slightly weaker soil 

moisture depletion over AMJ for higher levels of global warming. Although the JAS evaporative 

demand increases with higher levels of global warming, evaporation does not or only very weakly. In 

autumn and winter, stronger precipitation increases and less precipitation falling as snow under higher 

warming levels result in soil moisture replenishment to present-day levels in winter for all warming 

levels. 

 

A4.4d -- Sensitivity to the perturbations 

The results for the MPI-perturbed simulations are fairly similar in spring, but the soil moisture drying 

is stronger in summer and autumn, especially for 3K warming, owing to much stronger decreases in 

precipitation (Fig. 5c,d). JAS evaporation decreases, and the JAS temperature response is more 

strongly amplified compared to the climatological mean response than 2018+2K|EC. 

 

The HAD-perturbed simulations (Fig. 5e,f) give a stronger soil moisture drying and near-surface heating 

early in the growing season, as we have seen for the climatological mean response (Sec. 4.1), but this 

is more pronounced under the circulation of 2018. This is associated with stronger decreases in 

precipitation and cloud cover in April and May and hence a stronger increase in solar radiation. The 

decline in the increase in evaporation that is common to all simulations occurs around a month earlier, 

and the sensible heat flux is enhanced compared to the climatological mean response throughout 

summer. The temperature response exceeds the climatological mean response throughout the 

growing season, and soils are drier than under present-day conditions from as early as the end of 

March until spring 2019. 

 

A4.5 -- Impact on drought severity and frequency 

A4.5a -- Increase in the 2018 drought severity 

For all warming levels, the drought onset and ending under global warming occurs at roughly the same 

time as for the present-day event, with only slight differences between the individual members (Fig. 

5b). The drought duration is thus hardly affected or even decreases compared to 2018REF, while the 

drought intensity shows a 22% increase (8 mm +/- 2 mm (mean +/- σ∆)), resulting in an increase in the 

drought deficit volume of 20% under 2K warming. Tab. 2 summarizes the findings for all warming levels 

and GCMs. The HAD- and MPI-perturbed simulations show stronger increases in drought severity 

(+39%, resp. +25% under +2K warming) owing to decreasing precipitation in spring, respectively 
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weaker increases in precipitation in spring and stronger decreases in summer, especially under 3K 

warming. In general, drought intensity and severity increase with global warming, although drought 

episodes under 3K warming tend to be shorter than under 1.5K and 3K warming. 

 

A4.5b -- Increase in severe drought occurrences under 2K warming 

The boxplots in Fig. 3 reveal that there are summers in the 1980-2020 period with much stronger 

responses in the summer near-surface temperature and soil moisture than 2018. In Fig. 6 we show the 

co-occurrence of the July-September basin-mean soil moisture (SWI) and temperature response for 

each year in the 1980-2020 period, along with the absolute SWI and near-surface temperature under 

present-day and +2K conditions. The top 4 compound hot and dry years (2018, 2003, 2019 and 2020) 

in the present-day climate are marked, as well as the strongly responding years (1983 and 1989). The 

years with extreme soil moisture drying (1983, 1989) show strong warming, as expected, with a weaker 

correlation for smaller soil moisture responses. The soil moisture response for 2003, known for its 

severe hot and dry conditions and associated societal and economic impacts in central Europe (e.g. 

Rebetez et al., 2006, Fischer et al., 2007) is similar to the 2018 response, but with weaker warming. 

2019 and 2020, similar under present-day conditions, respond very differently, with a small response 

for 2019, but relatively strong soil moisture and temperature responses for 2020. The ranking of 

compound hot and dry summers thus changes under +2K warming, 2018 still ranking first, but the 

deviation from other years decreases. 2003 is very similar to 1983, 2020 and 1989, with 1983 being 

the hottest, 1989 the driest summer after 2018. 

 

The strongly responding summers (1983 and 1989) are moderately dry in the present- day climate 

(within the driest 25%), but years with soil moisture levels and temperatures that were very similar to 

these strongly responding years in the present-day climate, show much weaker responses. This 

suggests that large-scale circulation (variability) is still an important factor in the ’initialization’ of the 

amplified soil moisture drying and warming. Under the specific circulation conditions in 1983, 1989 

and 2020, the globally warmer background conditions result in strongly reduced precipitation, 

increased evaporation (except 1989) and soil drying in spring and early summer, resulting in a very 

strong response in incoming solar radiation, a negative response in evaporation and very strong 

increases in the sensible heat flux and near-surface temperatures later in summer. 

 

 To further quantify the impact of global warming on drought occurrences and severity in the west-

central European river basins under +2K warming, we determine the basin- mean drought deficit 

volume, duration and intensity for all years in the 1980-2020 period under present-day and +2K 

conditions (Fig. 7). Again, the severity of the 2018 drought episode clearly stands out under present-

day conditions. The drought deficit volume of 2003 is around three times smaller, with shorter 

duration, but especially smaller mean intensity. Furthermore, 2011, a spring drought (Trachte et al., 

2012) that did not pup-up in the JAS soil moisture levels, and the 2019-2020 drought episodes stand 

out. Under +2K warming the drought frequency more than doubles compared to present-day 

conditions, reflecting the on average drier soil moisture conditions in summer and autumn. As we have 

seen for the JAS soil moisture response, the increase in drought severity is very strong for the years 

1983 and 1989 (not qualified as drought under present-day levels), by far exceeding the present-day 

2003 drought severity, and also the 2020 drought severity increases to above present-day 2003 levels. 

Note that these droughts have a stronger drought intensity, but that the duration is slightly shorter 

than the present-day 2003 drought event. The frequency of more severe droughts than the present-
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day 2003 episode thus more than doubles, occurring on average once every eight years. This finding 

is confirmed by the results based on clim+2K MPI and clim+2K HAD, although amplitudes of the 

response slightly differ (Fig. C5 and C6). The April - March soil moisture evolution and spatial drought 

structure in JAS for the top 5 driest years under 2K warming is provided in Fig. 8. For 2018, apart form 

the intensification of the drought over the west- central European river basins, the future drought 

analogue affects a much larger part of Europe. The large spatial drought extent is a feature that is 

common to most future drought analogues. The drought intensification is not limited to central and 

southern Europe where the PGW simulations project the strongest soil moisture drying, but is seen 

for Sweden, Poland and the Baltic States as well. 

 

A4.6 -- Discussion 

In this study we have examined the implications of global warming for future drought severity in west-

central Europe, by systematically perturbing the 1980-2020 period to- wards future climate conditions 

using the PGW approach. The control experiment has been carried out with the RCM KNMI-RACMO2 

forced by large-scale information from the ERA5 reanalysis. The PGW-experiments use mean changes 

in temperature, humidity and winds derived from climate change information from GCM projections. 

Therewith results are less sensitive to GCM biases in the reference climate state, the atmospheric 

circulation is realistic per definition, the signal-to-noise ratio of the response is maximized, while a 

large part of the climate response is captured (Brogli et al., 2019b). Results can be directly related to 

real world events and their societal impact. This makes the results very tangible and therewith useful 

for climate change communication. Moreover, the PGW- simulations allow for a structural 

examination of the impact of adaptation measures or other changes in the system, and the PGW-

simulations presented here have been used to investigate the impact of water withdrawals on 

freshwater availability (Greve et al., 2021), and ecosystem adaptation (Bouaziz et al., 2021) under 

climate change. 

 

Here we have presented future analogues of the 2018 drought episode in west-central Europe, 

recorded as the most extreme drought in the 1980-2020 period in this region. It is generally 

hypothesized that under globally warmer conditions droughts set in earlier, last longer and are more 

intense, if conditions favoring a drought occur (Trenberth et al., 2014, Seneviratne et al., 2010). While 

this is true given equal precipitation deficits, here we show that for west-central Europe, under the 

anomalously persistent atmospheric blocking conditions of 2018, global warming yield increases in 

precipitation in spring, early summer and autumn that exceed the increase in evaporation, and prevent 

(EC and MPI-perturbed simulations) or limit (HAD-perturbed simulations) an increase in drought 

duration. The drought intensity moderately increases, resulting in an increase in soil moisture deficit 

volume of 20% (EC) to 39% (HAD) under +2K warming. 

 

The intensification of the 2018 soil moisture drought under PGW is fairly small compared to the 

climatological mean soil moisture drying. The reason is that the drought evolution in 2018 is, already, 

strongly limited by the moisture-constrained conditions, and increases in precipitation in autumn 

terminate the 2018 drought episode. However, the temperature response is strongly amplified 

compared to the climatological mean response and relative humidity strongly decreases. Combined, 

this implies strong increases in stress on society, the natural environment and agriculture, and in 

wildfire risk (e.g. Krikken et al., 2019, Manning et al., 2019). More extreme drought conditions in terms 

of duration could of course occur under even more persistent or longer sequences of atmospheric 
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blocking conditions than during 2018, in years with drier antecedent winter and spring conditions, or, 

under stronger climate induced precipitation drying in spring than derived from the PGW experiments. 

Van der Wiel et al. (2021) sample drought events from a large ensemble of transient global climate 

model simulations (EC-EARTH) that match or exceed the 2018 drought conditions in the Rhine basin, 

and find indeed events with drier spring conditions than for the EC-perturbed simulations, but similar 

to the results based on the HAD-perturbed simulations. 

 

Considering drought occurrences in the 1980-2020 period under 2K global warming, we have shown 

that the frequency of small to modest drought episodes strongly increases, as expected from the 

general soil moisture drying in (spring) summer and autumn, but more strikingly, that there is an 

unexpected increase in the frequency of 2003-like drought episodes owing to the occurrence of 

moderately dry years with very strong soil moisture drying and temperature responses. The non-

linearity in the drying and warming response is related to the transition of energy-limited to moisture-

limited evaporation regimes in the central-European regime transition area. Years with weakly 

moisture-limited evaporation under present-day conditions may respond strongly to decreases in 

precipitation and/or initially enhanced evaporation through shifts in the surface energy balance, 

further amplified by soil-moisture atmosphere feedbacks, in contrast to years such as 2018 and 2003 

for which the response reaches a limit because these years are already in a moisture-constrained 

regime under present-day conditions (Schär et al., 2004, Lenderink et al., 2007, Seneviratne et al., 

2010, Fischer et al., 2012). Moreover, the increased land-sea temperature gradient and south-north 

gradient over Europe may contribute to a stronger variability in heat and moisture advection 

(Lenderink et al., 2007, Holmes et al., 2016). Regarding the response in climatological mean soil 

moisture under PGW, our results indicate an increase in spring (HAD-perturbed simulations only), 

summer and autumn soil drying in the west-central European river basins under 2K global warming, 

yet soils are generally replenished to present-day levels in winter, in the top 1 m as well as in deeper 

soil layers. The general annual cycle in the soil moisture response is similar to results based on studies 

that use climate model ensembles of transient simulations, but e.g. Ruosteenoja et al. (2018) and Van 

der Linden et al. (2019) find a soil moisture drying response in winter as well. Apart from potential 

differences owing to GCM structure and model resolution, the circulation component of climate 

change that is only partly taken into account in the PGW-approach thus likely contributes to a stronger 

soil moisture drying in spring and summer, for example through the projected higher frequency of 

easterly winds in spring and summer in west-central Europe bringing more often drier and warmer 

conditions (Haarsma et al., 2009, Van der Linden et al., 2019), or smaller increases in autumn and 

winter precipitation, as shown by Brogli et al. (2019b). With respect to change in the drought 

frequency, our results are within the range of drought frequency changes derived from transient 

climate model simulations, with a doubling of 2003-like soil moisture droughts under +3K warming 

found by Samaniego et al. (2018), and 2018-like drought conditions (SPEI) becoming the new normal 

within the second half of the 21st century found by Toreti et al. (2019). The increase in frequency in 

2003- like droughts that we find based on the PGW-simulations is robust with respect to the selected 

GCM to derive the perturbations, and occurs independently of uncertain changes in the frequency of 

synoptic conditions that favor dry summers. 

 

A4.7 -- Conclusion 
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Droughts and associated heat waves form a threat to society and nature, as again demonstrated in 

recent years in west-central Europe. To develop adaptation strategies, information of changes in 

drought risk under ongoing global warming is required. The genesis of soil moisture droughts is 

complex, but droughts generally develop under the influence of persistent anomalously high 

pressures, blocking the normal advection of moisture to west-central Europe. While there are 

indications that the frequency of blocking conditions increases in response to global warming, changes 

in dynamics are highly uncertain owing to natural variability and climate model biases. In this study 

we have examined the impact of global warming on the development and severity of a 2018-like 

drought, in relation to changes in drought severity in the 1980-2020 period, conditional on the 

historical circulation, i.e. we show what the 1980-2020 period would look like in a 2K warmer world. 

Therewith, changes in droughts can be directly related to events and their societal impact in the recent 

history, and the experiments provide tangible examples of what global warming entails. 

 

Under 2K warming almost all years in the 1980-2020 period show a decrease in soil moisture 

availability in (spring), summer and autumn, consistent with results based on transient climate model 

simulations. The soil moisture response under the circulation of 2018 is fairly modest compared to the 

change in climatology, owing to the strong surface and canopy resistance to evaporation caused by 

low soil moisture availability and a strong vapor pressure deficit. The soil moisture deficit volume 

increases with 17% to 34% depending on warming level and GCM, owing to the increase in drought 

intensity. The drought duration is barely impacted owing to increasing precipitation in spring, autumn 

and winter. The increase in drought severity co-occurs with strong temperature increases. 

 

We furthermore show that the response in temperature and soil moisture drying can be particularly 

large for years with moderately dry conditions in the present-day climate. Using present-day 

thresholds, the drought frequency strongly increases under +2K warming, with 2019/2020-like deficit 

volumes occurring on average every three years, 2003-like deficit volumes every eight years, and 

under strongly enhanced temperatures. This shows that even without taking into account changes in 

the frequency of atmospheric blocking conditions, the drought risk in west-central Europe is strongly 

enhanced. 
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Figure 4: Difference between the 2018 and climatological mean (1980-2017) response to 2K warming 

(2018+2K EC - 2018REF) - (clim+2K EC-climREF) in a) temperature, b) precipitation, c,d) (potential) 

evaporation and e) SWI in the top 1 m of the soil. The response is masked over sea for clarity. 
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Table 2: Drought severity of the 2018 drought for present-day conditions (REF) and for +1.5K, +2K and 

+3K global warming. Listed are the ensemble mean (spread). 
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Figure 5: Basin-mean anomalies in (top row) the 2018 near-surface temperature and middle row) the 

SWI in the top 1m of the soil under present-day (grey), 1.5K (orange), 2K (red) and 3K (brown) global 

warming, and (bottom row) hydrological budget changes over AMJ and JAS 2018 in response to 1.5K, 

2K and 3K global warming, for 2018+2K|EC (left column), 2018+2K|MPI (middle column) and 

2018+2K|HAD (right column). All lines are determined as the deviation of the present-day climate 

mean (climREF). Solid lines with shading depict the 2018 ensemble mean and spread, as in Fig. 1; 

dashed lines the 95th (temperature) and 5th (SWI) percentile for present-day conditions and 2K 

warming; the solid line without shading depicts clim+2K – climREF, i.e. the climate response. ∆X = 

response in the seasonally integrated flux X (mm) or in the storage change X over the season (mm), 

with P = precipitation, E = evaporation, Q = runoff, S’1-2.9m = change in soil moisture storage in the 

bottom soil layer over the season and S’snow = change in snow storage over the season, negative values 

indicating a decrease in snowmelt. The sum of the components equals the increase in soil moisure 

depletion in the top 1 m of the soil, meaning positive changes in precipitation are plotted on the 

positive y-axis, positive changes in all other variables are plotted on the negative y-axes. 
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Figure 6: Scatterplot of the 1980-2020 JAS basin-mean near-surface temperature and SWI. (a) 

Response under 2K warming. (b) Absolute values under present-day (grey) and +2K (red) conditions 

and their distribution (boxplots). The +2K values are based on the EC-perturbed simulation. 2018 is 

indicated with a +. The strongly responding years and years with co-occurring low SWI values and high 

temperatures under present-day conditions are marked. 

 

 
Figure 7: Drought severity in 1980-2020 under present-day (grey) and +2K conditions (red). Shown are 

a) the drought deficit volume, and b) drought duration and mean intensity. Droughts are determined 

for each hydrological year (April - March). The maximum drought per year is shown. Data for 2018-

2020 is based on the 2018REF and +2K ensemble   data. Error bars show the ensemble mean +/- 1 

standard deviation. 
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Figure 8: Top 5 droughts under +2K conditions, all exceeding the severity of the present-day 2003 

drought in the west-central European river basins. a) Annual cycle of the SWI anomaly for present-day 

(left) and +2K conditions (right) as in Fig. 5, but with the 1980-2017 mean-5th percentile envelope 

shaded. b) Spatial structure of the top 5 droughts in JAS, showing the JAS-mean SWI percentile in the 

1980-2017 period (climREF). Droughts are shown in order of increasing basin-mean drought severity 

under +2K warming. Dark red colors indicate severe drought conditions. 
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