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1 Executive summary 

With this report we demonstrate the applicability of the within EUCP developed climate datasets for 
providing (cross-)sectoral hazard and impact outlooks for case-studies throughout Europe. The aim of 
the case-studies was the development of future hydro-meteorological risks indicators related to 
amongst others flash floods, river floods, storm surge, coastal erosion and wind droughts at various 
spatial scales relevant to end users. We focus on four different types of climate models simulations: 

(i) Decadal projections from WP1;  

(ii) Global Climate Model (GCM) projections and weighting methods (WP2); 

(iii) Regional Climate Model (RCM) simulations from WP3 and EURO-CORDEX;  

(iv) Convection Permitting Regional Climate model (CP-RCM) simulations from WP3. 

We evaluate their applicability for the assessment of the following sectoral impacts: 

(i) The impact of multi-decadal droughts in the agricultural sector 

(ii) The impact of wind drought and wind speed changes for the wind power sector; 

(iii) The impact of climate change on flash flood frequency of occurrence and severity in the 
Alps; 

(iv) The impact of changes in urban pluvial and coastal flooding in Italy  

(v) The impact of climate change on streamflow changes throughout Europe; 

(vi) The impact of sea level rise and storm surge changes on coastal erosion; 

An overview of the case-studies is provided in Table 1.1.1. This report presents the technical modelling 
workflows developed to translate the climate model outputs into sectoral hazard and impact 
indicators. The end-user perspective will be evaluated in deliverable 4.5. Overall, we were able to 
derive valuable and state-of-the-art information within the different case-studies using mostly existing 
modelling and post processing techniques. Some key findings we find include: 

 Not all required climate variables are by default reported as output from the climate 
simulations. Within EUCP there was strong interactions with climate modelers and the case-
studies expressed their specific needs. Still, interpolation and machine learning were required 
to derive wind speed at 100meters (hub height) for assessing impact on energy production; 

 The CP-RCM simulations provide hourly precipitation fields at resolutions of 1 – 4 km and the 
models resolve convective storms which is extremely valuable for future urban and flash 
flooding assessments. Although process representations have strongly advanced over time, 
biases in precipitation may remain. When interested in absolute values instead of relative 
changes there may be a need for bias-correction but high-resolution large scale homogeneous 
hourly and (even) daily observational datasets required for such correction hardly exist; 

 The length of CP-RCM simulations is limited to about one decade due to the high 
computational costs. In the flash flooding case-study we presented a method to trade space-
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for-time using a regional pooling approach and were able to assess changes in flash flood 
occurrence and severity over the whole European Alpine domain; 

 Only a few decadal prediction systems provide sub-daily data for the components of surface 
wind (i.e., the uas and vas variables), which are necessary to compute the surface wind speed. 
One possible approach to overcome the limited ensemble size is to use climate indices 
computed with monthly data (which are provided by all the forecast systems) as predictors. 
But provision of sub-daily data by the climate modelers would be the preferred solution. 

 Not all the decadal forecast systems are available in near-real time, this limits the multi-model 
ensemble size for a potential operational climate service provision. A larger number of 
predictions contributing to the multi-model ensemble could increase the skill in predicting 
variables with a low signal-to-noise ratio such as the precipitation or the surface wind speed. 

 There is a difference in climate change projections provided by the individual climate models 
due to, amongst others, differences in real world process representation and model 
parameterization. Ensembles of climate models are in the meantime available for all of the 
above-mentioned types of climate models. They provide a way to address the inter-model 
uncertainties and to provide future projections with a realistic spread; 

 The use of multi-model ensemble datasets was further enhanced by applying weighting 
techniques developed by WP2 partners, herewith a more robust climate change signal can be 
obtained. 

In deliverable 4.4 we will further discuss the opportunities and draw-backs of the climate model 
datasets, provided under EUCP and available through other initiatives. Deliverable 4.4 will not only 
address the application within the EUCP project but also elaborate on future cross-sectoral 
applications. 

 

Table 1.1.1: Overview of the WP4 case-studies of EUCP. 

Case study topic Lead  Source climate 
projections  

Inter WP-linkages and collaborations 

Flash flood projections for 
the Alps 

Deltares WP3 CP-RCM 
simulations 

Application of WP3 datasets 

Projections of future wind 
droughts 

IPSL EURO-CORDEX Interaction with wind energy sector in 
Brittany 

Projections of coastal 
erosion under future 
storm conditions and Sea 
Level Rise 

Deltares Jackson and Jevrejeva 
(2016) – IPCC AR5 

Collaboration with end-user JRC and 
interaction with the Dutch water authority 

Multi-year forecast of 
drought and heat stress 
conditions over global 
wheat harvesting region 

BSC Decadal forecasts 
(forecast years 1 to 5) 
from WP1. 42 
members from 4 
GCMs 

Collaboration with end-user JRC (science 
area: Agriculture and food security). The 
study was further developed under the 
framework of the Copernicus Climate 
Change Services (contract number: C3S_34c) 
that developed a prototype climate service 
product 

Multi-year forecast of 
surface wind 

BSC Decadal predic-tions 
from the Decadal 
Climate Prediction 
Project of CMIP6 

Application of WP1 datasets in WP4 
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Coastal and urban flood 
impacts Italy 

CMCC CP-RCM, Sea Level 
Rise scenarios 

Application of WP3 datasets  

Ensemble streamflow 
projections European 
rivers 

Deltares EURO-CORDEX Collaboration with WP4 partners and end-
user JRC. Application of weighting methods 
from WP2 

Ensemble streamflow 
projections Europe – 
antropoghenic + climate 
influence 

IIASA EURO-CORDEX + 
Pseudo-global 
warming (PGW) 
experiment KNMI 

Collaboration with WP4 partners. PGW 
simulations from KNMI WP2 
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2 Project objectives 

The deliverable has contributed to the following EUCP objectives: 

No. Objective Yes No 

1 
Develop an ensembles climate prediction system based on 
high-resolution climate models for the European region 
for the near-term (~1-40 years) 

X   

2 Use the climate prediction system to produce consistent, 
authoritative and actionable climate information 

X   

3 
Demonstrate the value of this climate prediction system 
through high impact extreme weather events in the near 
past and near future 

X   

4 
Develop, and publish, methodologies, good practice and 
guidance for producing and using EUCP’s authoritative 
climate predictions for 1-40 year timescales X   

 

  



 

EUCP (776613) Deliverables D4.3  Page 9 
 

3 Detailed report 

This report summarizes the case-studies conducted under EUCP in WP4. The aim of the case-studies 
was the development of sectoral and cross-sectoral indicators to assess future hydro-meteorological 
risks (e.g., flash flood, river flood, storm surge, coastal erosion, wind droughts) at various spatial scales 
relevant to end users. Herewith the case-studies demonstrate the value of the climate prediction 
system through assessing the impacts of future high extreme weather events. All case-studies aimed 
at deriving actionable indicators by translating the climate data developed in the other work packages 
of EUCP (e.g., WP1, WP2 and WP3) for specific applications.  

This deliverable mainly focusses on the technical description of the case studies and the assessment 
of the sectoral climate impacts. The most important stakeholder interactions, for example for the 
coastal erosion case study, have been included, but Deliverable 4.5 reports on the end-user 
perspective in more detail. Deliverable 4.4 focuses on the lessons learned and the opportunities and 
drawbacks of the newly developed climate models and climate datasets. The work for the outermost 
regions will be reported in a separate deliverable that is due end of March. 

Most of the case-studies are finalized, where possible the results have been shared with end-users 
(see deliverable 4.5). Several scientific papers have been published as indicated in the individual 
chapters. For a few case-studies, such as the flash flooding in the Alps, the last steps will be completed 
and published (submitted for peer reviewed international journals) in the final project months. The 
progress and main results are presented in the remainder of this chapter. 

Next to the scientific publications, for most of the case-studies the summary and results are 
presented in storyboards developed by eScienceCenter: EUCP Storyboards (eucp-project.github.io) 
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3.1 Assessing future changes in flash flood frequency and occurrence 
over the European Alps 

3.1.1 Brief introduction to the case-study 

 
Flash floods are sudden local floods triggered by high-intensity, short duration rainfall. They can cause 
serious economic damage and lead to mortalities and mainly occur in mountainous terrain, like the 
Alps.  Increases in extreme rainfall have been observed (Förster and Thiele, 2020) and climate change 
may further influence the severity and occurrence of extreme rainfall events that potentially lead to 
flash floods. 

The recently developed Convection Permitting Regional Climate Models (CP-RCMs) have grid 
resolutions of 1 to 4 km. This enables the simulation of orographic precipitation as well as the explicit 
computation of convection. They provide hourly simulations that represent the diurnal cycle of the 
modelled rainfall (Ban et al., 2021). One drawback is that this increase in spatial resolution comes with 
a high computational cost and thus runtime, the simulation periods are therefore often limited to 
about a decade which creates a challenge for extreme value analysis. Building upon existing local and 
event-based flash flood studies where CP-RCMs are connected to hydrological models to assess future 
changes in flash flood occurrence and severity (Kay et al., 2015; Schaller et al., 2020) a regional 
approach was chosen for simulating flash floods in the European Alps. Ten-year transient CP-RCM 
simulations available from WP3 are used as input for a high-resolution hydrological model. With this 
regional approach, the hypothesis is that we can trade space for time. Given the relatively short 
simulation periods of 10 years available but using a large enough spatial domain, we will be able to 
statistically assess future changes in flash flood frequency and magnitude over the European Alpine. 

A manuscript with a detailed description of this case-study has been submitted for publication: 

Zander. M.J., Viguurs, P.J., Sperna Weiland, F.C. and A.H. Weerts. Future changes in flash flood 
frequency and magnitude over the European Alps  Weather and Climate Extremes (submitted), 
2021. 

Planned future publications: 

Zander, M.J., F.C. Sperna Weiland, C. Liguori, A.H. Weerts, 2022. Hydrological evaluation of a high-
resolution multi-model convection permitting climate model ensemble over the European Alps. to be 
submitted to Env. Res. Letters, 2022. 

Zander, M.J., F.C. Sperna Weiland, and A.H. Weerts, 2022.  High Resolution Multi-model convection 
permitting climate model ensemble-based assessment of future changes in flood frequency and 
severity over the European Alps, to be submitted, 2022. 
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3.1.2 Methods 

 
CASE-STUDY AREA 
The case-study focuses on the European Alps and has been sub-divided in the upstream parts of the 
Rhone, Rhine, Danube, Adige and Po river basins (see Fig. 3.1.1). Most flash floods in the European 
Alps occur in late summer and autumn. The high Mediterranean Sea surface temperature of late 
summer can load the atmosphere with substantial amounts of water vapor. The conditionally unstable 
air masses advect to the coast where they are forced to lift and are channeled due to the orography. 
This can lead to intense convective rainfall events which cause flash floods (Tarolli et al., 2012). 

HYDROLOGICAL MODEL 
The wflow-sbm hydrological model developed at Deltares was schematized for the separate Alpine 
river basins (Imhoff et al., 2020; Eilander et al., 2021). wflow_sbm is a distributed hydrological model 
developed to maximise the use of high-resolution spatial data from Earth observations. An advantage 
of the model concept is its flexibility in spatial resolution and its performance without calibration. 
Models can be set up (automated) for river basins around the globe using open data at various spatial 
resolutions. The model parameters are estimated from point-scale (pedo)transfer functions. For this 
study the models were set-up at a regular grid resolution of ~1km that allows for detailed streamflow 
simulations. 

 

Figure 3.1.1: Hydrological modelling domain over the European Alps with the basins Adige (yellow), Danube (blue), Alpine 
tributaries to the Po (orange), Rhine (pink) and Rhone (green) 

 

CONVERCTION PERMITTING REGIONAL CLIMATE MODEL 
The first part of this study builds upon the Unified Model (UM), MetOffice Hadley Center UKMO 2.2 
km (Berthou et al., 2018)1. Three UM simulations are used, see Table 3.1.1. The current climate is 
simulated for the period of 1998-2007 (’Current Climate’) and for the climate change scenario the 
period 2096 - 2105 is simulated with RCP 8.5 (’Future Climate’). The Historical simulation serves to 
                                            
1  In the final months of this project the case-study is being extended with a larger ensemble of CP-RCM 
models to account for model uncertainties, this work is still to be finalized. 
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assess the quality of the model, while the Current Climate and Future Climate simulations are to assess 
the differences that could be attributed to climate change. The climate data was converted to the 
hydrological model grid at an hourly temporal resolution at the JupyterLab environment developed 
by eScienceCenter as part of the EUCP project to enable big data processing. 

 

Table 3.1.1: Hydrological model simulations 

 

3.1.3 Results 

 
HYDROLOGICAL MODEL PERFORMANCE 
As can be seen in figure 3.1.2, that presents the performance (KGE values) for the wflow_sbm run 
forced with the ERA5 historical reference dataset, the hydrological model is able to simulate the 
annual cycle of discharge with low flows in winter and snow melt leading to discharge peaks from May 
to July. For most stations the KGE ranges from 0.4 to 0.7.  

 

Figure 3.1.2: Map of the Kling-Gupta Efficiency for the 130 stations for daily discharges for 2002-2012 for the ERA5 Validation 
simulation. 

 

The ERA-5 driven validation simulations generally clearly outperforms the Historical simulation, as can 
be seen from the higher KGE values in figure 3.1.3. This indicates that the CP-RCM downscaled ERA-
Interim precipitation is not as good as the more recently released ERA5 data.  
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Figure 3.1.3: Performance comparison between observed and modelled daily discharges for 2002-2012 Validation ERA5 and 
Historical ERA-Interim simulations for the 130 stations using the Kling-Gupta Efficiency. 

 

FLASH FLOOD VALIDATION 
For the validation of flash flood simulation and definition of a threshold for flashflood occurrence this 
study relies upon two databases of recorded flood events from which the flash floods were selected, 
the EuroMedeFF (Amponsah et al., 2018) and Hanze (Paprotny et al., 2017) flood databases 

Table 3.1.2: Recorded flash floods and simulated peak specific discharges in the Historical ERA-Interim driven simulation

 

All recorded flash flood occurrences from the flood databases correspond to high modeled unit peak 
discharges as can be seen in Table 3.1.2. The modelled peak unit discharge ranged from 0.49 to 2.4 
m3s−1km−2. Based on that information the threshold for modelled flash floods was set to 0.5 m3s−1km−2. 

 
FUTURE FLASH FLOODS 
Figure 3.1.4 shows the number of days on which the flash flood threshold for peak specific discharge 
was reached or exceeded for the Future and Current Climate simulations for summer and autumn. 
The summers have more threshold exceedances than autumns in both Current Climate and Future 
Climate simulations. In summer there are more days with threshold exceedances for the Current 
Climate scenario than for the Future climate while in autumn we see hardly any difference between 
the number of days with threshold exceedances in the Future Climate scenario. The decrease in flash 
flood occurrence can be a result of decreases in mean precipitation and increases in evaporation that 
lead to drier soil moisture conditions offering more storage during extreme events (Gaume et al., 
2009). In addition, in line with these results the CP-RCM also indicates a decrease in the occurrence of 
heavy precipitation events, but an increase in the heavy precipitation amount (the p99.9 value). 



 

EUCP (776613) Deliverables D4.3  Page 14 
 

 
Figure 3.1.4: Cumulative distribution of the number of days on which the flash flood threshold is reached in summer (JJA, solid 
lines) and autumn (SON, dashed lines) for the Current Climate (green) and Future Climate simulation (orange). 

 

 
Figure 3.1.5: Boxplots for maximal daily specific discharge exceeding the 0.5 m3s−1km−2 specific threshold for summer (JJA) 
and autumn (SON) for the Current Climate and Future Climate simulation. The boxplots show the 25th, 50th & 75th percentile, 
with whiskers for the 2.5th & 95th percentile and diamonds for the maximal value. 

Figure 3.1.5 shows box-and-whisker plots of the magnitude of the daily maximal peak specific 
discharges for each of the threshold exceedances. Over the entire Alpine domain, both the Future 
Climate summer and autumn have a higher 75 and 97.5th percentile of threshold exceedances. This 
indicates increases in the more extreme flash floods. The median magnitude remains more or less the 
same. The difference between current and future climate is largest for the Adige river. Here the 
median size flash floods are indicated to increase and the increases in the more extreme flash floods 
are larger than for the other basins.  

3.1.4 Lessons learned and conclusions 

The available time-series from CP-RCMs are limited to 10 years. With such time slices it is possible to 
move beyond event-based climate impact studies (Felder et al., 2018), but derivation of local statistics 
of change is hampered. Similar to Alfieri et al. (2015) and Rudd et al. (2020) this study presented a 
regional approach, aggregating results over larger regions. Yet one cannot estimate return periods of 
extreme events as the simulation periods are too short to warrant such an approach.  
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The CP-RCM may be biased both for the GCM driven and ERA-interim driven simulations. It was 
explicitly chosen not to apply a bias correction, downscaling or a delta change approach to the climate 
model data as these techniques can disturb the change signal. Additionally, no homogeneous datasets 
exist for bias correction for the entire modelled Alpine domain at the resolution and time-step of the 
CP-RCM data. Because we directly compare the two GCM driven climate simulations and thus focus 
on relative changes, the influence of biases for quantifying changes in flash flood frequency and 
magnitude is limited.  

Similar to the work of Rudd et al. (2020), this study shows added benefit of using the combination of 
convection-permitting climate model and hydrological modelling. Changes in precipitation do not 
translate one-on-one into changes in flash floods. The hydrological model is required to estimate 
frequency of occurrence and magnitude of the specific peak discharge that represents flash floods. 

Up till now these kind of regional analysis have been based on RCM data, to evaluate the added value 
of CP-RCM simulations it would be good to compare the results of the flash flood analysis for an 
ensemble of modelling chains set-up with CP-RCM data and RCM data as input. 

Assuming a relation between the flood peak and the flood impacts, we speculate that although overall 
the number of flash floods will decrease, they will become more devastating.  

Finally, the construction of climate models always involves simplified presentation of real-world 
processes and need for parameterizations. To account for these uncertainties the here presented 
work is being extended with an assessment based on a multi-model ensemble of CP-RCMs as became 
available during the project (WP3). This will also include a hydrological evaluation of the different CPM 
models 
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3.2 Long term variation and projection of hub-heigh wind speed in 
Europe during twenty-first century 

3.2.1 Brief introduction to the case  

This case-study focuses on the multiannual and multidecadal decreasing trend in surface winds, 
known as “wind stilling” or potential surface wind declines (Vautard et al., 2010). Based on 822 surface 
weather stations, Vautard (2010) found that the surface wind speeds have declined by 5-15% over 
most continental areas in the northern mid-latitudes. The decline of wind speed in many regions of 
the world is expected to decrease wind power production (Tian et al., 2019), as wind speed is the most 
effective factor for comprehensive wind resource assessment (Jang and Byon, 2020). Compared with 
surface wind data, which is abundantly available in datasets, 100m wind speed (w100) data are more 
relevant for an accurate assessment of wind energy resources, as the hub height (hhub) of large wind 
turbines is about 100m (Rehman and AI-Abbadi, 2007). However, w100 data is limited in observations 
and climate models report output at specific pressure levels instead of absolute elevation, which 
brings challenges to the assessment of wind energy resources. In general, the 100 meters wind speed 
is estimated from the surface wind speed by an empirical relation (often a calibrated multiplicative 
factor) which turns out in many cases to be too approximative to be useful. In particular, in many 
places, and in stable weather conditions (nighttime, wintertime under anticyclonic conditions), the 
100m wind speed is disconnected from the surface. For instance, the diurnal cycle of the wind speed 
is relatively “flat” at 100m while at surface it is pronounced with a peak in the daytime. 
 
To fix this, the present study focused on developing a machine learning method to establish a transfer 
model for constructing the hourly grided w100 dataset in European region. The model, developed in 
this study, can be applied to calculate w100 output of global climate models flexibly and efficiently. It 
can thus be used in the assessment and estimation of long-term 100m wind speed in European region 
from past to the future. We hope to obtain more accurate estimation of long-term wind-power 
changes. 

3.2.2 Methods 

TRADITIONAL METHOD (BASELINE) 
Most previous studies extrapolate the ground wind speed to hub-height wind speed based on a simple 
equation as follows: 
 

x୦୳ୠ = x(
୦౫ౘ

୦ౝ
) (1) 

where x is the wind speed near the ground, h the height where xwas measured and E is the power 
law exponent most often considered to be 0.143 (Olaofe, 2016). The results of the traditional method 
will be used as reference in the evaluation of the here developed machine learning model. 

 
RANDOM FOREST 
The Random Forest (RF) method was used to establish the transfer model in this study. The RF method 
is based on CART DT (Breiman, 2001) and produces numerous independent trees to reach a final 
decision through random bagging resampling (Prasad et al., 2006) to the selection of a random subset 
of training samples and a random subset of candidate variables at each node of a tree. Due to the 
randomization, RF has the robustness to counteract the noise, outliers and overfitting potentially 
suffered by a DT model (Rhee et al., 2014). RF provided mean decrease accuracy or mean decrease 
Gini index in classification when a variable is permuted. The greater this decrease in accuracy, the 
more important the variable. 
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WIND SPEED MODEL CONSTRUCTION USING MACHINE LEARNING METHODS 
In the present research, machine learning methods were used to construct the 3-hourly 100m wind 
speed based on the ERA5 dataset. The methodology of this study is presented in Fig. 3.2.1. 
 

 
Fig. 3.2.1 Workflow of the machine learning model-based w100 construction algorithm. 

 
For establishing the input feature set, we selected meteorology features, including t2m, t850, 
roughness, t850-t2m (temp_diff), w10(t) and the w10 value at its eight neighbor moments, including 
w10(t-4), w10(t-3), w10(t-2), w10(t+1), w10(t+1), w10(t+2), w10(t+3) and w10(t+4); geographical 
location, including longitude, latitude, land-ocean (land=2 and ocean=1); time feature: hour (0 UTC = 
0, 3 UTC= 1, 6 UTC =2, 9 UTC =3, 12 UTC = 4, 15 UTC =5,18 UTC = 6, 21 UCT =7). This choice accounts 
for atmospheric stability with simple, easily available parameters (temp_diff), and for the hourly wind 
evolution. The output label is 3-hourly w100 of ERA5 dataset. Maximum and minimum normalization 
is used to scale the input and output to between 0 and 1. Lasso method was used in feature selection 
(Fonti and Belitser, 2017).  
 
We selected 400.000 samples from 1979-2005 in the research area. The sampling process was random 
and covered all the research periods and areas. We set 20% samples as the test set, 20% samples as 
the validation set and the other samples as the train set. Several popular statistical indices, including 
Mean Absolute Error (MAE), Root mean squared error (RMSE) and Mean squared error (MSE), were 
used to quantitatively evaluate the performance of the machine learning models.  
 
We applied the ML transfer model for 10 Euro-CORDEX climate simulations to obtain the 100m wind 
speed output of each model. Before applying the model variables to the best algorithm, we pre-
processed the model output variables so that the variables can be applied to the trained algorithm. 
Firstly, we interpolated the model data on a 0.25°grid based on a bilinear interpolation method to 
make its spatial resolution consistent with that of the ERA5. Then, the bias of each variables between 
ERA5 and models were removed following Miao (2016). Finally, the changes of hub-height wind speed 
in Europe from past to future could be explored in this research.  
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3.2.3 Results 

FEATURE SELECTION 
The goal of feature selection is to underline which explanatory variables are more relevant to predict 
the response variable. Fig. 3.2.2 illustrates that the variable that has the highest influence on the w100 
in a selected time t is w10(t). It shows steadily positive impact. Another important variable is the land-
ocean difference, which also positively affects the w100; as we can see clearly the temp_diff negatively 
affects the w100. 
Furthermore, other important variables, such as w10(t-1), roughness, latitude and longitude, 850t, 
w10(t+3), w10(t+1), time, w10(t+2), w10(t+4) and w10(t-4), can also be selected to establish the RF 
model in the next step.  
 

 
Fig.3.2.2 The regression coefficients in Losso, which show the weights corresponding to different variables. 

 
MODEL EVALUATION 
We compared the performance of machine learning and the traditional algorithm in reflecting the 
temporal changes of w100 during 1979-2005 (Fig.3.2.3a). For traditional algorithm, the MSE and RMSE 
in the test set were 2.133 and 1.461, respectively. The machine learning methods produced much 
higher accuracy than traditional model. The RMSE was 0.572, showing a clear improvement.  
For diurnal cycle of w100 in the whole region (Fig.3.2.3c), the results simulated by RF were consistent 
with the real nature, which was higher during the day and lower at night. The reason is that the high-
altitude wind speed is less affected by ground factors, such as trees and buildings. During the night, 
the surface temperature is lower than the air temperature in high altitude. The atmospheric 
stratification is more stable, which leads to higher wind speed in high altitude. However, for traditional 
algorithm, it was difficult to reflect the nonlinear change of wind speed from low altitude to high 
altitude. The result of the traditional model showed that the w100 was lower during the day and 
higher during the night, which was not consistent with the real nature. For seasonal cycle (Fig.3.2.3d), 
traditional algorithms overestimated the seasonal variation of w100, especially in the winter. The 
machine learning algorithms can well reflect the seasonal changes of wind speed with higher accuracy. 
For the spatial evaluation of the algorithms (Fig.3.2.3b), RF showed good performance in each grid 
with the RMSE value <1. However, the accuracy of the algorithms was declined near the coastline, 
suggesting that the variables with land and ocean difference information need to be added into the 
model establishment.  
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Fig.3.2.3 (a) The w100 obtained by ERA5 and the RF simulations point by point. Only the results from the first 100 samples 
were shown in this figure. (b) The RMSE of w100 in each grid of the region based on ERA5 and RF. The (c) diurnal cycle and 
(d) seasonal cycle of w100 based on ERA5 and RF simulations during 1979-2005.  

 
In summary, compared with the traditional algorithm, the machine learning-based algorithm is 
powerful in constructing the gridded 100m wind speed. RF has good performance on the hourly scale, 
which corrects the poor performance of the diurnal cycle characteristic using the traditional algorithm. 

 
MODEL APPLICATION 
The RF model was applied to the output of the 10 high-resolution climate models to obtain the w100 
outputs in each model. Thus, the future changes of hub-height wind speed in Europe can now be 
explored. We applied the RF algorithms to the 10 climate models and investigated the characteristics 
of w100 under RCP8.5 emissions. The results showed that in the whole of Europe, the w100 showed 
significant decreasing trend in the past fifty years (rate=-0.019 m·s-1·decade-1, p<0.01). The decreasing 
trend will be slightly enhanced in the next 100 years (Fig. 3.2.4), which is projected to reduce of wind 
energy resources in Europe. However, the trends are much lower than the observed trends during the 
past period 1980-2010, of the order of 0.1 m·s-1·decade-1. This trend was largely attributed to changes 
in land use/land cover and the induced change in surface roughness. However, a recent recovery was 
also found in the last decade (Zeng et al., 2019), which indicates that part of the observed trend at 
least is due to natural variability. 

 
Fig.3.2.4 Regional mean series of w100 for the 10 climate model outputs (gray lines) for the period 1979–2090. The black line 
showed the ensemble mean result for the 10 climate model outputs. 
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3.2.4 Lessons learned 

In this study, a transfer method to construct a hub-height wind speed gridded dataset based on 
machine learning was developed. The presented results demonstrated that machine learning 
algorithms are versatile tools for estimating the wind speed in 100m high, which is meaningful to 
estimate the hourly gridded wind resource in Europe. In this research, the RF algorithm was applied 
in 10 climate models. The result shows that the 100m wind speed decreased significantly in most of 
Europe during the period 1979-2019. The decreasing rate might be enhanced in the future, which 
indicates an adverse effect for the development of wind power generation in Europe. While this 
decrease is not critical for wind energy development, local reductions can be larger and may be critical 
for some projects. It is therefore important that new wind power projects and their funding account 
for these changes. 
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3.3 Attribution of winter wind energy drought in Europe 

3.3.1 Brief introduction to the case  

Decline of wind speed in many regions of the world is expected to negatively impact wind power 
production. While the general climate-change driven decrease of wind speed remains limited on 
average to a few tenths of meters per second, wind power generation and power supply can also be 
perturbed by episodic periods of “wind droughts” when most of Europe lacks wind, especially during 
cold winter days when demand is high. 

This problem was pinpointed by a local wind energy producer in Britanny, but also several others. In 
the Britanny case, a succession of low-wind seasons was recently observed, with wind speed values 
lower than those observed during the test period for the wind farm, leading to this question. Past and 
future changes in wind energy drought as well as their underlying drivers remain poorly understood. 
As the occurrence of wind drought events receives increasing attention, two questions should be 
discussed in this study. Will the decrease in wind energy resources continue in the future? How much 
of the current “wind energy drought” is caused by human activities? 

It is helpful to consider the attribution technique to explore the above questions. Attribution of 
extreme climate events is an emerging scientific area (Stott et al., 2016) to explore extremes with 
specific magnitude, time scale and spatial scale. It could be used to examine whether human influence 
could impact wind energy drought at different time scales. Thus, the aim of this case study is to 
examine whether human influence on climate could have affected the wind energy drought events in 
Europe and analyse the different risks under 1.5, 2, 3 and 4 ℃ global warming scenarios. Such a 
question was raised in a recent attribution study of the December 2016 low-wind month (Vautard et 
al., 2017) and it was suggested that monthly wind droughts were increasing with climate change. 
However, this trend was not studied in a more systematic manner and over other regions than North-
Western Europe. 

3.3.2 Data and Methods 

 
DATA 
The area selected for this study comprises most of the land in Europe, bounded by -22°W, 33°S and 
45.5°W, 72.5°N. Only land data were considered in this research. The gridded dataset was taken from 
the ERA5 dataset for the period from 1979 to 2018 with a spatial resolution of 0.25°×0.25° (Hersbach 
et al., 2020). It was used in this study to estimate the observed trends in hub-height wind speed 
(Jourdier, 2020). In this study, we used 10 high-resolution climate projections from the EURO-CORDEX 
(Coordinated Regional Climate Downscaling Experiment) ensemble (Jacob et al., 2014), with 4 Global 
climate Models downscaled by 4 Regional Climate Models. For these 10 models, the 100m wind speed 
outputs were calculated following the Machine Learning method in the previous chapter. For these 
ensembles, natural forcing simulations were not available, but anthropogenic forcing was assumed 
dominant in explaining the differences between two climate periods during 1971-2000 and 2000-
2029. We compared the extreme distribution from three time periods (1971-2000, previous; 2000-
2029, current; and 2041-2070, future) to analyze the effect of anthropogenic climate change on low 
wind energy generation episodes. The all forcing projections (2006-2100) under Representative 
Concentration Pathways (RCPs), RCP8.5 were used (a high-emission scenario). 
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EVENT DEFINITIONS 
Load Factors were used to measure the wind energy in this study. Fig. 3.3.1 shows the power curve 
that was used in this study. For onshore and offshore wind turbine power curve, the cut-in wind speed 
is 3 m/s, the peak wind is 10 m/s and 12.5m/s, respectively and the cut-off wind speed is 22.5 m/s and 
25.5 m/s, respectively (Jamil et al., 2019).  

The classical method defined an extreme event as an exceedance of a threshold in the tail of the 
distribution of an event indicator. The indicator used here to describe wind energy stagnation was the 
minimum monthly mean Load Factor in each winter (December-February). We referred it as minimum 
Load Factor (MLF) in this research. For each day, the maximum daily Load Factor was calculated firstly 
from hourly data; then, for each winter, the MLF was calculated as the minimum regional mean value 
during the winter in the whole region. Once the indicator is defined, a threshold was calculated as the 
return value of MLF corresponding to the 10-year return period in the current climate (2000-2029). 
The probability of MLF lower than the threshold could be calculated in the three different periods. For 
a more quantitative result, the risk ratio was calculated to indicate the different probabilities of the 
wind energy drought between two climate periods. When the risk ratio <1, the low wind energy winter 
is more frequent in the earlier climate period.   

 

Fig.3.3.1 Load Factor functions based on 100m wind speed used here, including offshore and onshore wind turbines. 

 
STATISTICAL METHODS 
The attribution of the extreme event consists of comparing probabilities of the MLF exceeds the 
threshold in different climate periods. For model ensemble, a nonparametric approach was used by 
pooling all MLF of each ensemble member into a single pool and computing the probability by 
counting the number of exceedances of the threshold. Bootstrapping (Efron and Tibshirani, 1994) was 
used to obtain confidence intervals by randomly sampling 1000 times. The 95% confidence intervals 
are calculated by taking the 5th and the 95th return periods of the bootstrap sample (Vautard et al., 
2017), with the median value serving as the best estimate. When a value was selected in the bootstrap, 
the entire model series would be selected. The risk ratios were calculated in the same method. The 
current climate (2000-2029) was used as the reference period, and the risk ratios were calculated 
relative to this period. When the confidence interval of this ratio does not include 1, one concludes 
that the probability is significantly changing due to climate change.  
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3.3.3 Results 

MODEL EVALUATION 
The linear trend in the regional winter Load Factor for ERA5 (Fig.3.3.2) is -0.004 decade-1 during 1979-
2018, which is not statistically significant (p>0.05). All winter months are considered. The Load Factor 
changes based on model ensemble mean has similar characters when compared to ERA5, with a 
correlation of 0.26. We also compared the distribution of the Load Factor based on ERA5 and each 
model simulation. The quantile-quantile plots of the distributions of the Load Factor showed the 
model simulation slightly underestimates the larger Load Factor values (upper tail of the distribution), 
while it matches well with the ERA5 for the low Load Factor values (lower tail of the distribution). 
These comparisons suggest that the model simulations gave a good description of the Load Factor 
distribution in Europe during the current period.  

 

Fig.3.3.2 Changes of mean Load Factor for each winter in the whole Europe during 1979-2019, based on observation, ERA5 
(red curve) and ensemble mean of the models (black curve). Grey area: same calculation but shows 5%-95% range of 10 
climate models. 

 

ATTRIBUTION IN THE WHOLE EUROPE AND A CASE STUDY IN FRANCE 
To estimate the probability ratio in different climate periods, we restricted the average over the 
research region and defined a load factor threshold (0.242) - the return value of MLF corresponding 
to the 10-years events in the current climate (details in section 2.2). Then, the probability was 
calculated as the MLF lower than the threshold under different climate periods. The return period of 
this low wind energy event is about 10.3 years, which suggests the MLF lower than threshold become 
more than 1.03 times as probable in the current climate than in the 1971-2000 climate, which is not a 
statistically significant change. The low wind energy winter has become more frequent in recent years 
and the increase will continue in the future. During 2041-2070, the return period becomes 6.6 years, 
and the probability ratio is about 1.5 [1.2, 1.8] (i.e. 50% more probable), which remains significant 
when taking all ensemble members together. Therefore, in the whole of Europe, the probability of 
low wind energy winter is marginally significantly different between past and current periods. In 
addition, a case study was investigated on most of France, bounded by -4.8°W, 42.3°S and 8.3°W, 
51.1°N (Fig.3.3.3) and the results show that the MLF threshold for 10 years event is lower, but wind 
energy drought events do not significantly occur more frequently from the past to the future. The 
attribution analysis can also be applied to specific wind farms to assess the impact of wind drought 
events on wind energy companies. 
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Fig.3.3.3 Changes in return values and return periods for model ensemble in (a) the whole Europe and (b) France. Dots 
represent median of consecutive sorted return period/values model values from 10000 bootstrap estimations, together with 
5%-95% confidence intervals (dashed lines). The black horizontal line shows the return value corresponding to the 10-years 
return period during 2000 to 2029. 

 

THE WIND ENERGY DROUGHT UNDER THE RCPS SCENARIOS 
Global warming (Easterling et al., 2000; Sheffield and Wood, 2008) substantially increases the 
probability that multiple extremes such as heat waves and droughts. Thus, in this research, we 
explored the probability of a MLF below threshold under different global warming level of 1.5, 2, 3, 4 
℃. Firstly, to determine the time periods when given global warming thresholds, we followed the 
methodology as described by Vautard et al. (2014). The reference period was 1971-2000 and the 
running window was selected as 31 years. Only RCP8.5 was used to project wind energy in the future. 

Fig.3.3.4 shows that in the 1.5 ℃ warming world, the 10-year return period events occurred more 
frequently, the ratio value becomes 1.14 [0.98, 1.28], as the return period is about 8.8 years. In the 
2℃ and 3 ℃ warming world，the return years become 7.2 and 6.7 years, respectively. When global 
temperatures are increased by 4 ℃，the probability of occurrence of the 10-years events increase to 
20%, the risk ratio becomes 1.59 [1.47,1.92] and the return period is about 6.3 years. It means that 
the changes of low wind energy in Europe are particularly vulnerable to climate change, experiencing 
adverse effects of global warming in the whole of Europe. With global warming, low wind energy 
winters in Europe occur more frequently. 

 

Fig.3.3.4 Return periods for model ensemble under 1.5, 2, 3 and 4 ℃ global warming scenarios. For boxplot, the red dot shows 
the median of all the grids in this region; the vertical bar shows the small uncertainty interval of the median. The 5% and 95% 
of the medians show the uncertainty interval. 
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3.3.4 Lessons learned 

Low wind energy winters in Europe are expected to become more common in a warming world. In the 
whole of Europe, the return period of 10.3-years events in the past has been shortened to about 10 
years at present and it would be shortened to about 6.6 years during 2041-2070 under RCP 8.5 
scenarios. With global warming at 1.5, 2, 3, 4 ℃ level the 10-years events at present become more 
frequent, 8.2, 7.8, 6.7, 6.3 years respectively. That global warming could lead to a remarkable increase 
(about 20%) in the probability of wind drought winter until the middle of the century. These findings 
provide new insights into wind energy drought risk assessment and management for producers and 
grid managers. 
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3.4 Sandy beach erosion induced by sea level rise 

3.4.1 Brief introduction to the case  

Sea level rise (SLR) will cause shoreline retreat of sandy coasts in the absence of sand supply 
mechanisms (Nicholls and Cazenave, 2010). Almost 41% of the European population lives in coastal 
regions (Collet and Engelbert, 2013), while a substantial portion of the coastline is sandy (Luijendijk et 
al., 2018). Coastal erosion can diminish the touristic and recreational value of beaches and cause direct 
impacts to infrastructure and assets. Additionally, since sandy beaches act as the first buffer against 
storms, shoreline retreat can increase the vulnerability of the hinterland to coastal flooding. To this 
end, large scale assessments of shoreline retreat can aid in identifying hotspots and guide adaptation 
strategies (Figure 3.4.1). Here, shoreline retreat due to SLR at the European scale was assessed using 
probabilistic SLR projections from Jackson and Jevrejeva (2016), which were produced based on CMIP5 
model members. Moreover, a new global spatially varying nearshore slope (SVNS) dataset was 
produced and a satellite derived sandy beach (SDSB) location dataset was used to identify the erodible 
part of the coastline. To quantify the effects of these input geophysical data, additional 
representations of sandy beach location and their nearshore slope were used to create different 
combinations. An uncertainty analysis was performed to compare the sources of uncertainties in the 
final land loss projections through the 21st century. 

This case study was conducted in collaboration with the end-user Joint Research Centre (JRC) and it 
has been published and described in more detail in: 

Athanasiou, P., van Dongeren, A., Giardino, A., Vousdoukas, M.I., Ranasinghe, R., Kwadijk, J., (2020). 
Uncertainties in projections of sandy beach erosion due to sea level rise: an analysis at the European 
scale, Nature Scientific Reports, 10, 11895. https://doi.org/10.1038/s41598-020-68576-0  

Athanasiou, P., van Dongeren, A., Giardino, A., Vousdoukas, M., Gaytan-Aguilar, S., Ranasinghe, R., 
(2019). Global distribution of nearshore slopes with implications for coastal retreat. Earth System 
Science Data, 11, 1515–1529. https://doi.org/10.5194/essd-11-1515-2019 

- The developed dataset has been used by JRC to extend the analysis to the global scale: 

Vousdoukas, M.I., Ranasinghe, R., Mentaschi, L. et al. Sandy coastlines under threat of erosion. Nat. 
Clim. Chang. 10, 260–263 (2020). https://doi.org/10.1038/s41558-020-0697-0 

Almar, R., Ranasinghe, R., Bergsma, E.W.J., Diaz, H., Melet, A., Papa, F., Vousdoukas, M., Athanasiou, 
P., Dada, O., Almeida, L.P., Kestenare, E., 2021. A global analysis of extreme coastal water levels with 
implications for potential coastal overtopping. Nat. Commun. 12, 1–9. 
https://doi.org/10.1038/s41467-021-24008-9 
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Figure 3.4.1: Schematic representation of the shoreline retreat impacts at sandy coastlines and adaptation strategies to be 
followed. 

3.4.2 Methods 

 
SHORELINE RETREAT 
The Bruun rule (Bruun, 1962) was used to quantify the direct erosion of sandy beaches due to SLR. 
This approach is based on a simple two-dimensional mass conservation rule assuming that an 
equilibrium profile will be preserved in the future when SLR occurs. The Bruun Rule is expressed as: 

𝑅 =
𝑆𝐿𝑅

tan(𝛽)
 

where R is the horizontal shoreline retreat, SLR is the sea level rise, and tan (𝛽) is the nearshore slope. 
It was assumed that if SLR is negative there will be no shoreline retreat. The European coastline was 
discretized with an alongshore spacing of 1 km using the Open Street Maps dataset of 2016 
(OpenStreetMap contributors, 2015). Shoreline retreat was assessed at this 1 km grid and then 
aggregated to land loss at the regional, country, and European levels (Figure 3.4.3). The projections 
coverage included the coastal EU counties except Croatia, and Romania, Bulgaria and Cyprus which 
are partially covered by the used datasets. Since no information is available on the landward extents 
of sandy beach, all shoreline retreat and land loss projection presented herein are potential ones. 
Moreover, the projection presented here accounts only for the effects of SLR in the absence of any 
other ambient shoreline changes related to changes in sediment budget. 

SEA LEVEL RISE PROJECTIONS 
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Sea level rise projections around Europe up to the end of the twenty-first century were obtained from 
the global probabilistic, process-based study of Jackson and Jevrejeva (2016). The SLR projections are 
available from 2010 to 2100, every 10 years, capturing the 5th, 17th, 50th, 83th, 95th and 99th percentiles 
of potential SLR under RCP 4.5 and a high-end RCP 8.5. The high-end RCP 8.5 scenario is based on IPCC 
AR5 (Church et al., 2013) but uses Antarctic and Greenland ice sheet contributions from Bamber and 
Aspinall (2013), resulting in higher median global SLR (i.e., 84 cm versus 74 cm of AR5) and larger and 
more asymmetric uncertainties (Vousdoukas et al., 2018). The high-end RCP 8.5 scenario will be 
referred simply as RCP 8.5 for the rest of the chapter. These projections were of regional SLR, thus 
taking into account the regional footprint of SLR, due to various contributions. On the other hand, 
local tectonics and subsidence are not included in the projections.  

GEOPHYSICAL DATA 
Shoreline retreat as computed using the Bruun rule is linearly dependent on the local nearshore slope. 
For this case study a global dataset of nearshore slopes was produced at a 1 km alongshore resolution 
(called SVNS dataset herein, Figure 3.4.2), using global topo-bathymetric data (Athanasiou et al., 
2019).  

The spatial distribution of sandy beaches is a critical input for assessing shoreline retreat at large 
spatial scales. Here the Satellite Derived Sandy Beaches (SDSB) location dataset (Luijendijk et al., 2018) 
was used to represent the location of sandy beaches in Europe. This dataset has global coverage and 
was created using machine learning techniques on satellite images from the Sentinel-2 mission. 
Additionally, the geomorphological map of the European coasts available from the EUROSION project 
was used as an alternative to represent the sandy beach distribution along the European coastline.  

 

Figure 3.4.2: Global map of nearshore slopes. Red colours indicate steeper slopes while blue colours indicate milder slopes. 
Note that in the colour scale the slopes have been grouped in non-equidistant increments in order to highlight the spatial 
differences. 
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Figure 3.4.3: Schematization of the framework used herein to compute future European coastal land loss under the four 
different uncertain sources: (1) sandy beach location data, (2) nearshore slope data, (3) climate change scenario, and (4) sea 
level rise projections. 

3.4.3 Results 

PROJECTIONS OF SHORELINE RETREAT AND LAND LOSS 
Using the SDSB and SVNS data, by 2050 a European average SLR driven potential shoreline retreat (in 
the absence of ambient shoreline changes) of between 18.1 and 53.9 m (5%-95% confidence interval) 
under RCP 8.5, relative to the baseline year 2010 (Figure 3.4.4). At the end of the century, these 
projections reach values between 51 and 241.5 m. The uncertainties are related to the contribution 
of steric SLR, ice sheets, glaciers and land–water storage. At the end of the century, the uncertainty 
related to the dynamic behavior of the Antarctic ice sheet dominates the total uncertainty of the SLR 
projections, which consequently introduces a large uncertainty to the end of century shoreline retreat 
and coastal land loss values. Only in the North Baltic Sea is the shoreline retreat significantly low due 
to glacial isostatic adjustment which reduces the regional relative SLR in the area. 

For RCP 4.5, the potential shoreline retreat by 2050 is projected to be between 10.7 and 33.9 m (5%-
95% confidence interval), i.e. almost 35% smaller than that for RCP 8.5. At the end of the century, 
mitigation could play an even more significant role with a reduction of almost 55% in average shoreline 
retreat under RCP 4.5 compared to that projected for RCP 8.5.  
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Figure 3.4.4: (Left) Projections of European average shoreline retreat relative to the baseline year 2010 for RCP 4.5 and RCP 
8.5 using the SDSB and SVNS geophysical datasets. Thick lines indicated median and shaded area indicated the 5th and 95th 
percentiles. (Right) Maps of median shoreline retreat projections using the same geophysical datasets for 2050 and 2100.  

With respect to the total coastal land loss, 473–1,410 km2 (5-95% confidence interval) is projected to 
be lost across Europe under RCP 8.5 by 2050, using the SDSB and SVNS data. By 2100 this range is 
projected to be between 1,334 and 6,316 km2. Under RCP 4.5, these values are almost 35% and 55% 
smaller by 2050 and 2100, respectively.  

The coastal retreat values calculated per location are aggregated to coastal land loss at the NUTS3 
regional level, and then normalized according to the coastal length of each NUTS3 region. This results 
in maps that indicate vulnerable NUTS3 regions which could potentially lose large coastal areas with 
respect to their total coastal length.  
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Figure 3.4.5: Normalized coastal land loss (km2/km) projections per NUTS 3 region for the median SLR at 2100 under RCP 8.5 
(in the absence of ambient shoreline changes), relative to the baseline year 2010. The coastal land loss has been normalized 
per the coastline length of each NUTS3 region. Note that each region has a variable area and thus coastline length as defined 
by Eurostat. Each map represents an assessment with a specific combination of geophysical (sandy beach location and 
nearshore slope): (a) EUROSION and 1:100 slope, (b) EUROSION and SVNS, (c) SDSB and 1:100 slope and (d) SDSB and SVNS. 
The maps are projected in the ETRS89-LAEA system. The values at the bottom left of each map indicate the European average 
shoreline retreat (m) and are derived for median SLR projections, while in the brackets the average EU values are given for 
the of 5th to 95th percentiles of the SLR projections. 

When using the SVNS data and irrespective of the sandy beach distributions dataset, highly vulnerable 
regions are identified on the Italian Adriatic coast, the French Atlantic coast, Belgium, The 
Netherlands, Denmark, Lithuania and Latvia (Figure 3.4.5). 

3.4.4 Lessons learned 

Using the presented analysis, maps of potential shoreline retreat and land loss were produced for all 
the European coastal zone, allowing us to identify areas where SLR will have the highest impacts on 
the sandy shores. These include regions at the Italian Adriatic coast, the French Atlantic coast, 
Belgium, The Netherlands, Denmark, Lithuania and Latvia. Still, the present study focused only on the 
effects of SLR in the absence of any other ambient changes due to sediment supply, changes in wave 
climate or human interventions. These extra processes can be critical for more informed decision 
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making when projections of the shoreline position need to be made. To this end, the landward extents 
of sandy beaches need to be known as well in order to produce more accurate estimates of land loss 
to coastal erosion. All these points are discussed in detail in Athanasiou et al. (2020). 

The present work highlights the need for accurate geophysical data to represent the coastline in 
coastal erosion assessments. The uncertainties related to the representation of the geophysical 
coastal characteristics account for a high percentage of the uncertainties in the projections of SLR 
induced land loss in Europe, especially up to the middle of the 21st century. For the second half of the 
century uncertainties related to the SLR projections become more dominant.   

Using the produced global dataset of nearshore slopes (Athanasiou et al., 2019) an important step in 
better representing the spatial variability of the coastline was made.  This dataset has been used in a 
study led by JRC (end-user) to assess future shoreline changes on the global scale, including SLR 
induced retreat, ambient changes and storm erosion (Vousdoukas et al., 2020). In that study storm 
erosion was modelled using global wave and storm surge modelling, forced by a 6-member CMIP5 
GCMs ensemble. Additionally, the global nearshore slope dataset was used in assessing uncertainties 
in global wave overtopping in a study led by the LEGOS joint research unit (Almar et al., 2021).  
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3.5 Efficient dune erosion prediction at the Dutch coast 

3.5.1 Brief introduction to the case  

During extreme sea-storms the increased water levels induced by the combination of storm surge, 
tides and wave setup; and the high waves can lead to intense coastal erosion at sandy coasts (Figure 
3.5.1). Coastal erosion at sandy coasts can have devasting impacts, by directly damaging assets in the 
eroded areas or by altering the coastal flooding susceptibility of the hinterland at low-lying areas (van 
Dongeren et al., 2018). These effects are expected to be exacerbated in the future due to climate 
change. The sandy dunes along the coast of the Netherlands act as one of the main protection 
mechanisms against coastal flooding. To this end, dune safety is a critical matter for coastal zone 
management, which is performed by Rijkswaterstaat (end-user), an agency of the Ministry of 
Infrastructure and Water Management of the Netherlands.  

Process-based numerical models have shown good skill in predicting dune erosion during extreme 
events and have been applied for early warning systems and dune safety assessments (McCall et al., 
2010). However, assessing dune safety at large spatial scales or with probabilistic methods (which 
involve a high number of simulations) with this kind of models can become challenging due to the high 
computational costs. To this end, here, a meta-model approach was developed to allow for quick 
estimation of dune erosion using a combination of process-based modelling and machine learning 
techniques. The developed meta-model based on Artificial Neural Networks (ANNs) allows for 
estimation of dune erosion volume in a matter of seconds only using a set of input parameters 
describing the storm conditions and the local morphology of the coast. This highlights its potential use 
for assessing impacts of climate change at large spatial scales (e.g., the whole Dutch coast). 

 

 

Figure 3.5.1: Schematic describing the processes of dune erosion during extreme sea storms. 

3.5.2 Methods 

When using data driven techniques to predict physical impacts, care should be taken that the model 
has been trained with a representative set of cases, since data-driven methods are not good in 
extrapolating out of the range of their training space. Observations of pre-storm and post-storm 
elevations are not available at the Dutch coast for a large enough number of historic storms and 
alongshore locations to enable a good training of the data-driven model. To this end, we created a 
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synthetic but descriptive dataset using the dune impact model XBeach (Roelvink et al., 2009), which 
has been validated at the Dutch coast (Figure 3.5.2). 

 

Figure 3.5.2: Flow diagram describing the basis of this study, on using a meta-model approach to efficiently estimate dune 
erosion. 

TRAINING DATA 
There are elevation measurements available at ~1400 sandy beach and dune locations (profiles) along 
the Dutch coastline (Figure 3.5.3). Using this elevation transects together with offshore water level 
and wave observations, various local morphological and hydrodynamic characteristics of the coastline 
were extracted for each of the ~1400 profiles (Figure 3.5.4). An extensive study based on clustering 
techniques was undertaken, to use a selection of these parameters to choose a representative subset 
from these ~1400 profiles, that is descriptive of dune erosion processes for the whole Dutch coast. 
Using 10 morphological and hydrodynamic parameters, that were found to be the most important, 
along with information on simulated dune erosion, a subset of 100 profiles were chosen (93% input 
reduction), called typological coastal profiles (TCPs).  
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Figure 3.5.3: (Left) Map of the Dutch coast indicating the location of transects and measuring stations. (Right) An example of 
a cross-section of the elevation at one transects, indicating the various morphological parameters that were extracted 

 

Figure 3.5.4: (Left) Maps of the spatial variability along the Dutch coast of four morphological parameters of the various 
parameters that were extracted at the Dutch coast. (Right) Map with the location of the 100 typological coastal profiles 
selected with the clustering technique. 

 

An extended analysis on the clustering methodology that was used to extract these 100 is presented 
in the following publication: 

Athanasiou, P., van Dongeren, A., Giardino, A., Vousdoukas, M., Antolinez, J.A.A.A., 
Ranasinghe, R., (2021), A Clustering Approach for Predicting Dune Morphodynamic Response to 
Storms Using Typological Coastal Profiles: A Case Study at the Dutch Coast. Front. Mar. Sci. 8, 1–20. 
https://doi.org/10.3389/fmars.2021.747754 

For the development of the meta-model, a descriptive set of storm conditions should be assessed, to 
enable a good predictive skill for any storm event that could occur at the Dutch coast. To this end a 
multivariate extreme value analysis was followed, using historic extreme storms, from a record of 
wave conditions and water levels across four offshore wave stations (Figure 3.5.3). For each storm 
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event, the maximum significant wave height (Hs), the concurrent peak wave period (Tp), the storm 
surge level (SSL) and the duration of the storm (D) were extracted. Then marginal distributions were 
fitted to each storm variable and a copula-based approach was used to simulate a synthetic set of 
100,000 events, while preserving the interdependencies between the storm variables (Li et al., 2014). 
Then using a maximum dissimilarity algorithm, the 100 most dissimilar events were chosen to further 
use in the meta-modelling framework. 

The combination of the 100 representative coastal profiles and the 100 representative offshore storm 
conditions, led to a total of 10,000 cases that were simulated with XBeach to assess dune erosion. For 
each simulation, the dune erosion volume (DEV) was extracted as an indicator of the intensity of the 
erosion impact. This metric describes the amount of sand that is lost from the dune after a storm event 
and is an important measure of dune safety. These 10,000 cases composed the training dataset for 
the meta-model, while an extra ~2,500 simulations were performed as a benchmark dataset to assess 
the predictive capacity of the meta-model and avoid overfitting.  

META-MODEL 
The meta-model developed herein is based on Artificial Neural Networks (ANNs), which are trained 
with the training dataset described in the previous sections. Artificial Neural Networks (ANNs) are 
computational networks that are a subset of machine learning and more specifically deep learning 
algorithms, inspired by the neuron structure of the human brain. The meta-model followed a 2-step 
approach with 1) a classification ANN, which predicted if there is going to be dune erosion or not, and 
2) a regression ANN which gave an estimate of the actual dune erosion volume (DEV) in m3/m. The 
input needed for a prediction included 14 parameters, with 10 parameters describing the local profile 
characteristics and 4 parameters describing the offshore storm conditions (Figure 3.5.5). A more 
comprehensive analysis of the development of the meta-model and the configuration of the ANNs 
and their results will be included in a publication which is under preparation: 

Athanasiou, P., van Dongeren, A., Giardino, A., Vousdoukas, M., Antolinez, J.A.A.A., 
Ranasinghe, R., Estimating dune erosion at the regional scale using a meta-model based on Neural 
Networks (2022, in preparation) 

 

 

Figure 3.5.5: Meta-model configuration with input parameters, the classification ANN and then the regression ANN. For a 
description of the input parameters please see Athanasiou et al. (2021). 
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3.5.3 Results 

The validation against the benchmark dataset showed that the meta-model had a high predictive skill. 
The classification ANN was able to predict if there is going to be dune erosion or not, with an average 
accuracy of 94% against the benchmark simulations. Moreover, the regression ANN had an average 
skill score of 0.82 with a RMSE of ~19 m3/m against the benchmark simulations. The meta-model was 
tested against available observations of dune erosion for 3 historic storms, showing good skill in 
capturing the observed dune erosion variability. Overall, the meta-model was able to produce a 
prediction for all the 1400 profiles of the Dutch coast in a matter of seconds for one incoming storm. 

3.5.4 Future applications 

While the presented meta-model is tailored for the Dutch coast, since the training dataset was 
representative to the conditions encountered at the Dutch coast only, the general framework is 
applicable for any sandy coast around the world. The meta-model offers a fast tool to efficiently assess 
climate change impacts on dune safety. Using projections of sea level pressure and wind fields from 
Global Climate Models (GCMs) or Regional Climate Models (RCMs) (connecting to the work of WP4 of 
EUCP), projections of storm surge level and wind conditions can be made. For example, Vousdoukas 
et al. (2018) used an ensemble of 6 CMIP5 model members to predict global storm surge levels and 
wind conditions under RCP 4.5 and RCP 8.5. These 6 members were chosen as the ones that described 
best the relevant ocean processes that can affect storm generation, surge and wave statistics.  A study 
on the effects of climate change in dune safety at the Dutch coast could be made if these projections 
were used to force the developed meta-model with historic and future storms conditions, to compare 
dune erosion statistics. Due to the computational speed of the presented meta-model this could be 
feasible for assessing these effects for all of the Dutch coast (260 km length) with the ensemble surge 
and wave projections under both RCP4.5 and RCP8.5. Improvements in the current framework include 
the representation of the wave directionality during the dune impact simulations which currently is 
assumed conservatively as normal to the coast. 

 

 

  



 

EUCP (776613) Deliverables D4.3  Page 38 
 

3.6 Multi-year forecast of drought and heat stress condition over global 
wheat harvesting region 

3.6.1 Brief introduction to the case  

Unfavorable and extreme climate events such as drought and heat stress affect wheat production and 
food security globally. Predicting such climate events in the next decade is of great interest for 
decision-makers, as this time horizon coincides with the strategic planning of many stakeholders in 
the wheat sector. To address this, we assess the forecast quality in predicting the evolution of drought 
and heat stress conditions using two proxy user-oriented drought and heat stress indicators: 
Standardised Potential Evapotranspiration Index (SPEI6) and Heat Magnitude Day Index (HMDI3) on a 
multi-annual timescale (forecast years 1 to 5). We present the probabilistic skill and reliability of 
decadal forecast to predict these indices for the months preceding wheat harvest on a global spatial 
scale. Following this, we demonstrate the potential applicability of these forecasts to enhance the 
adaptation and mitigation activities in the wheat sector by presenting the forecast of multi-year 
averaged SPEI6 and HMDI3 based on categorical events for the period 2020-2024.  

The presented study for the wheat sector is developed in close collaboration with the Joint Research 
Center (JRC) of the European Commission. In recent years, JRC (science area: Agriculture and food 
security) has been actively involved in exploring the added value of decadal climate information for 
building a reliable climate service for agricultural needs on a multi-annual to decadal timescale. In 
addition, the study was further developed under the framework of the Copernicus Climate Change 
Services (contract number: C3S_34c), where a prototype climate service product was developed for 
agriculture stakeholders in an effort to showcase the usability of the multi-year predictions for 
decision-making. 

The methodology used in this study is published in the following article: 

Solaraju-Murali, B., Gonzalez-Reviriego, N., Caron, L.P., Ceglar, A., Toreti, A., Zampieri, M., Bretonnière, 
P.A., Samsó Cabré, M. and Doblas-Reyes, F.J. (2021). Multi-annual prediction of drought and heat 
stress to support decision making in the wheat sector. npj Climate and Atmospheric Science, 4(1), pp.1-
9. https://doi.org/10.1038/s41612-021-00189-4 

3.6.2 Data and Methods 

DATA 
This study uses decadal forecasts from four different decadal prediction systems (42 members in 
total): 10 members from EC-Earth3 (Bilbao et al., 2021); 10 members from DePreSys4 (Sellar et al., 
2020), 10 members from MPI-ESM1-2-HR (Müller et al., 2018) and 6 members from CMCC-CM2 
(Cherchi et al. 2018). These are a set of 10-year long initialized forecasts that were simulated by 
explicitly prescribing the contemporaneous state of the climate system at the start of the simulation 
(November 1 of each year from 1960 to 2020), while also accounting for changes in radiative forcing 
(both natural and anthropogenic).  

For this case study, we restrict our analysis to the first five forecast years over the global spatial domain 
where (and when) the winter wheat is harvested. Figure 3.6.1 presents the regions over which the 
wheat is grown along with the harvesting month.  The information of the local wheat harvesting month 
is retrieved from the MIRCA2000 dataset (Portman et al., 2010).  



 

EUCP (776613) Deliverables D4.3  Page 39 
 

 

Figure 3.6.1: Wheat harvest month over global wheat-growing areas. For each grid box, the indices considered for this case 
study is estimated for the months preceding the harvest of wheat on a global spatial scale, and therefore, the presented 
results in this evaluation will correspond to different times of the year for different regions. 

METHODS 
We use JRA55 (Kobayashi et al., 2015) as a reference dataset to assess the quality of the decadal 
hindcasts in predicting the estimated indices on a multi-annual timescale. The choice of JRA-55 was 
motivated by the long continuous coverage of this product (1958—present) and by its high temporal 
coherency, with regards to daily maximum temperatures for computing HMDI3 index.  
 
An overview of the steps involved in this assessment is presented in Figure 3.6.2 and described in 
detail in Solaraju-Murali et al. 2021.  
 

 

Figure 3.6.2: Main steps involved in the development of this study 
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3.6.3 Results 

Figure 3.6.3 presents the predicted likelihood map (in %) of the most likely tercile (labelled as below-
normal, normal and above-normal) of drought and heatwave occurrences using the indices 
corresponding to the wheat harvesting season (in Fig. 3.6.1). Darker shades of colours correspond to 
a higher probability of occurrence of the event falling into the lower, middle, and upper tercile 
category of proxy drought (SPEI6) and heat stress indicator (HMDI3). 

Above-normal category (below-normal category) values of SPEI6 correspond to periods of wet (dry) 
conditions. On the contrary, the above-normal category (below-normal category) values present high-
intensity (low-intensity) heatwave events. The decadal predictions for both indices show an increase 
in drought (below-normal category) and heatwave (above-normal category) events over most of the 
wheat-growing regions prior to the harvest months for the period 2020–2024. 

Evaluating the quality of the predictions is considered a fundamental step in climate prediction 
because it assesses whether the prediction system can be trusted to forecast certain event categories 
(such as the ones presented in Fig. 3.6.3) and/or whether it offers an improvement with respect to 
the climatological forecast. The probabilistic skill and reliability in predicting the SPEI6 and HMDI3 over 
the wheat harvesting regions are presented in Figs. 3.6.4 and 3.6.5, respectively.  

 

Figure 3.6.3: Most likely tercile category (below-normal, normal and above-normal) of SPEI6 (a) and HMDI3 (b) for the years 
2020-2024 over the global wheat harvesting regions are displayed, in which the coloured grids show the category with the 
highest probability of occurrence.  

RPSS provides a measure of the skill of decadal forecasts in predicting the probabilities of the 
categorical events (tercile in our case) of the estimated index. Positive RPSS values indicate that the 
decadal predictions are more skillful compared to a simple climatological multi-year approach in 
predicting terciles of the estimated indices distribution. A map of RPSS for SPEI6 is shown in Fig. 3.6.4a. 
A positive and significant value of RPSS is found over several regions, particularly over the 
Mediterranean, Middle East, and South Africa, whereas a negative skill is found over parts of the 
United States, South America, Russia and northern Australia. For HMDI3, the best scores are achieved 
over Europe, the Western United States and South Africa, and the negative scores are found over the 
Eastern United States, South America and Angola (Fig. 3.6.4b).  
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The reliability diagram (Fig. 3.6.5) presents the reliability of the predicted probabilities of tercile 
categories over the wheat harvesting regions globally. Reliability diagrams are particularly useful to 
identify whether a forecasting system under- or over-forecasts any particular category. For a forecast 
to be reliable, the average forecast probabilities should match the observed relative frequencies; thus, 
the colored lines in the graph should fall close to the diagonal. For SPEI6, the red (blue) line, 
corresponding to below-normal (above-normal) category, demonstrates the reliability in predicting 
the dryness (wetness) event by the forecast system. The multi-year prediction of SPEI6 is found to be 
reliable for the below-normal and above-normal categories (Fig. 3.6.4a).  

 

Figure 3.6.4: Ranked probability skill score (RPSS) for tercile events of predicted SPEI6 (a) and HMDI3 (b) averaged over 
forecast years 1–5, with respect to the JRA55 reference climatology during the winter wheat harvest months for the period 
1961–2014.  Dotted grid boxes represent values statistically significant at 95% confidence level. 

On the other hand, the reliability diagram for HMDI3 over the global wheat-growing regions is 
presented in Fig. 3.6.4b. The below- and above-normal categories for both the domains are found to 
be reliable, whereas the normal category is under-confident when the forecast provides high 
probability estimates. Similarly, the normal category of SPEI6 is unreliable. This result is not entirely 
surprising since it has been shown that predicting the normal category tends to be more difficult as 
such events are known to have weak driving signals (Van Den Dool et al., 1991). 
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Figure 3.6.5: Reliability diagram of predicted SPEI6 (a) and HMDI3 (b) for the forecast years 1–5 during the winter wheat 
harvest months on a global spatial domain. A perfectly reliable system should result in a line that is as close as possible to the 
diagonal 

3.6.4 Lessons learned 

This work explored the ability of initialized decadal forecast at predicting drought and heat stress 
conditions over global wheat harvesting regions, an important first step in determining whether these 
products can provide useful, and ultimately actionable, information to stakeholders in the wheat 
sector, a sector that has been identified as one of the most vulnerable to climate-related risks 
(Zampieri et al., 2017; Bruno Soares et al., 2018).   

The results reveal that decadal predictions hold promise in predicting SPEI6 and HMDI3 in multi-
annual time scale, as these indices are found to be skillful (in comparison to the climatological 
forecast) and reliable over several wheat harvesting regions, particularly over Europe and the Middle 
East during the wheat harvest months. This implies that there exist opportunities to support wheat 
stakeholders in their decision-making processes, policies development, implementation, and 
evaluation on a multi-annual timescale. The proposed methodology can be easily adapted to different 
crops (such as rice and maize) or to other sectors where water management plays a fundamental role. 
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3.7 Multi-year forecast of surface wind 

3.7.1 Brief introduction to the case  

This case study aims at generating and evaluating different forecast products relevant to the wind 
energy sector at interannual to decadal time scales. The variability of surface wind speed affects wind 
energy production (Torralba et al., 2017; Lledó et al., 2019). Thus, it might be of high interest to 
stakeholders in both the wind energy sector to know such variations one or several years ahead. Wind 
energy producers could use this information to schedule maintenance tasks of wind farms when a 
period of long wind calms is expected to occur (which is also known as “wind droughts”). Besides, 
companies in the sector could benefit from knowing regions where the surface wind speed is foreseen 
to change so that they have extra information to anticipate renewable energy generation and demand 
(Soret et al., 2019). 

Before providing any forecast product, the forecast quality assessment is an essential step for 
identifying windows of opportunity (e.g., forecast periods and regions) with skill to provide high-
quality and reliable information that can be used for decision making by users (Merryfield et al., 2020). 
The Decadal Climate Prediction Project (DCPP; Boer et al., 2016) of the Coupled Model Intercom-
parison Project Phase 6 (CMIP6; Eyring et al., 2016) now provides the most comprehensive set of 
decadal predictions from multiple forecast systems. The increasing availability of these simulations 
leads to the question of how to best post-process the raw output from the forecast systems so that 
the most reliable information is provided to users. For example, using a multi-model ensemble for the 
forecast products generation may increase the quality of forecast products generated from individual 
forecast systems. Also, all forecast systems have systematic errors due to approximation in the 
mathematical methods and lack of complete knowledge about the climate system. To partially correct 
this issue, calibration techniques could be applied to the raw simulations to make their statistical 
properties more consistent with the observed ones (Doblas-Reyes et al., 2005). In addition, using 
predictors such as the Atlantic Multidecadal Variability (AMV; Trenberth and Shea, 2006) or the North 
Atlantic Oscillation (NAO; Smith et al., 2020) instead of the surface wind output from the systems may 
improve the forecast quality (given that the surface wind is a variable which shows a generally low 
skill and not all the systems provide the necessary sub-daily surface wind data, while all of them 
provide monthly sea surface temperature and sea level pressure data needed for AMV and NAO 
calculation, respectively). 

3.7.2 Data 

The currently available CMIP6/DCPP multi-model ensemble consists of 169 members from 13 forecast 
systems. Some of these decadal predictions have been generated within the EUCP WP1. However, 
only a few forecast systems provide sub-daily surface wind data, which is needed for this study. 
Besides, most systems only provide hindcasts (i.e., retrospective forecast), restricting the ensemble 
size for forecast product generation in near-real time. In addition, the same forecast systems provide 
historical forcing simulations (i.e., retrospective climate projections). These historical simulations use 
prescribed forcings (natural and anthropogenic) to simulate the climate system. In contrast, decadal 
predictions use, in addition to external forcings, initial conditions (which are generated from 
observational-based data) to try to capture the internal variability of the climate system (i.e., the slow 
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oscillations that provide predictability at interannual to decadal time scales). The comparison between 
decadal predictions and historical simulations provides an estimation of the impact of system 
initialization. Information about the forecast systems and their simulations is shown in Table 3.7.1. 

 
Table 3.7.1: Forecast systems contributing to the CMIP6/DCPP and their specifications (available simulations at the time of 
the study). It is specified which forecast systems provide sub-daily surface wind data, and which ones provide near-real time 
data. All the forecast systems provide monthly sea surface temperature and sea level pressure data. 

Forecast system 
nº of DCPP 
members 

nº of HIST 
members 

Sub-daily 
surface 

wind data 

Near-real 
time data 

Month of 
initialisation 

Reference 

BCC-CSM2-MR 8 3 No No January 
Wu et al. 

(2019) 

CanESM5 20 40 No Yes January 
Swart et al. 

(2019) 

CESM1-1-CAM5-CMIP5 40 40 No No November Yeager et al. 
(2018) 

CMCC-CM2-SR5 10 1 No Yes November 
Cherchi et al. 

(2018) 

EC-Earth3-i1 10 10 Yes Yes November 
Bilbao et al. 

(2021) 

EC-Earth3-i2 5 - Yes No November 
Tian et al. 

(2021) 

HadGEM3-GC3.1-MM 10 4 No Yes November Sellar et al. 
(2020) 

IPSL-CM6A-LR 10 32 Yes No January 
Boucher et 
al. (2020) 

MIROC6 10 10 No No November 
Tatebe et al. 

(2019) 

MPI-ESM1.2-HR 10 10 Yes No November 
Müller et al. 

(2018) 

MPI-ESM1.2-LR 16 10 No No November 
Mauritsen et 

al. (2019) 

MRI-ESM2-0 10 5 No No November Yukimoto et 
al. (2019) 

NorCPM1 10 30 No No October 
Bethke et al. 

(2021) 

 
For the evaluation, two different reference datasets have been used to account for the observational 
uncertainty when estimating the quality of the surface wind predictions: ERA5 (Hersbach et al., 2020) 
and JRA–55 (Kobayashi et al., 2015), both at hourly frequency. Monthly sea surface temperature data 
from the GISTEMPv4 dataset (Lenssen et al., 2019) has been used to compute the observed AMV 
index. For the observed NAO index, monthly sea level data from the ERA5 reanalysis has been used. 
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All the data has been masked over regions not relevant to the wind energy sector, keeping land regions 
(except Antarctica) and offshore regions. 

3.7.3 Methods 

EVALUATION, FORECAST AND REFERENCE PERIODS 
The decadal predictions for the average of the forecast years 1 to 5 have been evaluated over the 
1961-2018 period (start dates 1960-2013). For the examples of forecast products, the forecast systems 
that provide near-real predictions, and start dates until 2020 (predictions for the 2021-2015 period) 
have been used. Annual, winter (December-January-February; DJF) and summer (June-July-August; 
JJA) means have been considered to assess both multi-annual and multi-seasonal wind predictions. 
The predictions from the forecast systems initialized in January (see Table 3.7.1) have not been 
considered for the first forecast winter since they do not have data for the first December. 

Before evaluating the decadal predictions, anomalies have been computed relative to the 1981-2010 
climatology. This is a necessary step to remove the model drift (Boer et al., 2016) and for correcting 
the differences between the observed and simulated climatologies. The same reference period has 
been used to compute the climatology of the reference datasets and historical simulations. Also, the 
thresholds between the equiprobable categories for the probabilistic products have been estimated 
using the same period. 

DYNAMICAL MULTI-MODEL 
The dynamical multi-model has been built by pooling all members from the forecast systems that 
provide sub-daily surface wind data. Besides, another multi-model approach, which consists of 
averaging the ensemble means (probabilities) from the different forecast systems to create the 
deterministic (probabilistic) products, has been tested. Also, the calibration technique described in 
Doblas-Reyes et al. (2005) has been used to estimate the impact of calibration on the quality of the 
multi-model forecasts. 

For the sub-daily surface wind speed data, there are a total of 35 decadal predictions members and 
52 historical simulations members (see Table 3.7.1). Such multi-model ensembles have been 
compared to assess the impact of the forecast system initialisation. Due to the different spatial 
resolution of the forecast systems, all the data has been interpolated to a 2.5º grid resolution before 
building the multi-model ensemble. 

LINEAR REGRESSION MULTI-MODELS 
A perfect prognosis approach has been applied to generate the linear regression multi-models’ 
forecasts. This methodology uses past observations to calculate the regression coefficients, while it 
uses the model outputs to create the forecasts (Ramon et al., 2021). It uses a “predictor” (e.g., an 
index such as the AMV or NAO indices) to forecast a “predictand” (e.g., the surface wind speed). The 
AMV and NAO indices’ definitions used in this study can be found in Doblas-Reyes et al. (2013) and 
Smith et al. (2020), respectively. The steps of the perfect prognosis approach are the following: 

- Train the model with the observed predictor and the observed predictand, obtaining the 
coefficients of the linear regression model. In this step, it is essential to perform the training 
in cross-validation mode. This means that, to get the coefficients in each time step, the 
observations that would not be available are not considered, as would be the case for real-
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time forecasting. In the case of this study, as the forecast years 1-5 are used, the cross-
validation removes nine time-steps. For example, when obtaining the coefficients for the 
prediction of 2001-2005, time steps 1998-2001, …, 2005-2009 are not considered. The skill 
drastically decreases when performing the training in cross-validation mode, but it is crucial 
to not overestimate the actual skill of real-time predictions. Some tests have been carried out 
only leaving one time step out (leave-one-out mode, which is usually used), finding a much 
higher skill. However, it could not be done in near-real time, so the results presented here are 
performed with leave-nine-out cross-validation to be as more robust as possible.  

- Use the predicted predictor (e.g., the predicted NAO) to predict the predictand (e.g., to predict 
the surface wind speed). 

Four different regression multi-models have been created: 

- Short regression multi-model: linear regression model using the perfect prognosis approach 
built with the ensemble members from those systems that provide dynamical predictions of 
surface wind speed (see Table 3.7.1). It is used for comparison with the dynamical multi-model 
as they use the same ensemble members. 

- Large regression multi-model: same as the short regression multi-model but using the 
ensemble members from all the forecast systems (see Table 3.7.1). It is used to estimate the 
impact of the ensemble size, and to estimate the potential skill of the regression multi-model 
if all the forecast systems provide timely predictions. 

- Near-real time regression multi-model: same as the short regression multi-model but only 
using the ensemble members from those forecast systems that provide near-real time 
predictions (see Table 3.7.1). It is used to estimate how much skill is lost because of not having 
all the predictions available in near-real time. 

- Perfect regression model: same as the short regression multi-model but using the observed 
predictor as if it was the predicted predictor. It is used to estimate the potential skill that 
would be achieved if the predictor was perfectly predicted. 

The linear regression multi-models (except the near-real time one) have been obtained in a 2.5º grid 
for comparison with the dynamical multi-model. The near-real time regression multi-model has been 
obtained in the original reference dataset’s grid to get the predictions on the finest possible grid 
(which is one of the advantages of the perfect prognosis approach). For example, if using ERA5 for the 
training, the forecasts are obtained in a 0.25º grid. Then, the spatial resolution is increased by a factor 
of 10 when compared to the dynamical multi-model forecasts. 

METRICS AND STATISTICAL SIGNIFICANCE 
To evaluate the deterministic products, the Anomaly Correlation Coefficient (ACC; Wilks, 2011) and 
the Root Mean Squared Error Skill Score (RMSSS; Wilks, 2011) have been used. For the probabilistic 
products based on tercile and quintile categories, the Ranked Probability Skill Score (RPSS; Wilks, 
2011) and the Relative Operating Characteristic Skill Score (ROCSS; Kharin and Zwiers, 2003) have been 
used. A two-sided t-test has been applied to estimate the ACC significance at the 95% confidence level 
accounting for the time series’ autocorrelation (Von Storch and Zwiers, 2001). The Random Walk test 
(DelSole and Tippett, 2016) has been used to assess the significance of the skill scores at the 95% 
confidence level. Besides, other metrics like the FairRPSS (Ferro, 2014), Spread-over-Error ratio (Fortin 
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et al., 2014), the Signal-to-Noise ratio (Scaife and Smith, 2018), and the Ratio of Predictable 
Components (RPC; Eade et al., 2014) have also been considered in the study. 

The forecast quality assessment has been performed following the recommendations developed in 
the C3S_34c contract (Prototype Service for Decadal Climate Predictions; 
https://climate.copernicus.eu/c3s34c-prototype-service-decadal-climate-predictions). 

3.7.4 Results 

Given the substantial number of results, only some examples of figures are shown here. The complete 
catalogue can be accessed through an R Shiny App specifically created for this case study 
(https://earth.bsc.es/shiny/EUCP-wind-case-study/). 

Figure 3.7.1 shows the observed trend of the surface wind and quality estimates (ACC for deterministic 
forecast products, and RPSS and ROCSS for tercile categories for probabilistic forecast products) of the 
dynamical DCPP multi-model for surface wind speed predictions for the averaged winters of the 
forecast years 1-5. The observed trend is found to be significant over large regions of all the 
continents. For example, there is a significant increase in the surface wind speed over Africa and a 
significant decrease over large regions of Europe and Asia. The dynamical multi-model shows skill over 
Central Europe, India and some limited regions of America and Africa. The ROCSS for the below and 
above normal categories shows a pattern similar to the ACC. The ROCSS for the below normal category 
is particularly important in this study as it is the skill in predicting wind droughts. 

 

Figure 3.7.1: Observed trend of the surface with speed, ACC, RPSS, and ROCSS for tercile categories of the dynamical DCPP 
multi-model ensemble in predicting the surface wind speed for the averaged winters of the forecast years 1-5. The evaluation 
period is 1961-2018 (start dates 1960-2013). The reference period for computing the climatology and thresholds is 1981-
2010. ERA5 has been used as the reference dataset. Crosses indicate statistical significance of the trend, ACC and RPSS at the 
95% confidence level. 

The short and large regression multi-models (built using the NAO index as the predictor) show low skill 
in predicting the surface wind speed. This is partially due to the low skill in predicting the NAO index 
(see R Shiny App). In order to estimate the potential skill that would be reached if the NAO index is 
perfectly predicted, the forecast quality of the perfect regression model is shown in Figure 3.7.2. In 
the same figure, the observed teleconnections between the NAO index and the surface wind speed 
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are also shown, which are especially strong over Europe and North Africa (in addition to other regions 
over America and East Asia). The forecasts of the perfect regression model show high skill when 
measured with the ACC and ROCSS for below and above normal categories over large regions of 
Northern Europe and Northern Africa (where the leave-nine-out cross-validation has been applied as 
for the rest of regression models). Northern Europe is of particular importance for the wind energy 
sector as there are offshore wind farms over the North Sea. However, the NAO index has to be skillfully 
predicted to reach this forecast quality. 

Figure 3.7.2. Observed teleconnection between the NAO index and the surface with speed, ACC, RPSS, and ROCSS for tercile 
categories of the perfect regression multi-model using the NAO as the predictor (i.e., potential skill if the NAO index was 
perfectly predicted) in predicting the surface wind speed for the averaged winters of the forecast years 1-5. The skill scores 
have been computed using climatology as the reference forecast. The evaluation period is 1961-2018 (start dates 1960-
2013). The reference period for computing the climatology and thresholds between categories is 1981-2010. ERA5 has been 
used as the reference dataset. Crosses indicate statistical significance of the observed teleconnection, ACC and RPSS at the 
95% confidence level. 

Figure 3.7.3 shows an example of a probabilistic forecast product (based on tercile categories) for 
predictions of the surface wind speed over Barcelona for the forthcoming five winters. The forecasts 
have been generated with the near-real time regression model using the NAO as the predictor. The 
ROCSS is also shown for each tercile category, being negative for all of them (which means that the 
forecast is less skillful than the climatological forecast). If the skill in predicting the NAO is increased, 
potential climate services could be provided to inform users in the sector about future variations in 
the surface wind speed. 
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Figure 3.7.3. Example of probabilistic forecast product (tercile categories) for the surface wind speed in Barcelona during 
the averaged winters of the forecast years 1-5. The forecasts have been created with the near-real time regression model 
using the NAO as the predictor. Dots correspond to the observed tercile. Colours correspond to the forecasted probabilities 
for each tercile. The skill in predicting each category is shown with the ROCSS using climatology as the reference forecast. 
The evaluation period is 1961-2018 (start dates 1960-2013). The reference period for computing the climatology and 
thresholds is 1981-2010. ERA5 has been used as the reference dataset. 

3.7.5 Lessons learned 

- The dynamical multi-model ensemble shows limited areas with skill in predicting the surface 
wind speed. Significant skill has been found over Central Europe, India, and some regions of 
Asia, Africa, and America.  

- A properly cross-validation applied (in the case of this study, leave-nine-years out since 
forecast years 1-5 have been assessed) when creating the linear regression model drastically 
decreases the forecast quality compared to the same methodology but applying leave-one-
out cross-validation. However, it must be properly applied to avoid overestimating the actual 
skill. 

- The AMV index is well predicted. However, due to the limited length of its timeseries, it cannot 
be considered as a good predictor.  

- The NAO index has been found to be a good predictor for the surface wind speed over large 
regions of Europe and Africa, especially during the winter season. However, the skill of the 
forecast systems in predicting the NAO index is low, meaning that it is not a good input for 
forecasting until it is skillfully predicted. 

- More work is needed to improve the quality of the predictions, and methodologies like the 
NAO-matching proposed by Smith et al. (2020) and the search for better predictors as in 
Borchert et al. (2021) are being considered. 

- More forecasting centers should consider providing sub-daily surface wind predictions from 
their forecast systems. It is a huge amount of data, but it could benefit many users for 
preparation if a period of higher/lower wind speed is expected. 

Further work will be carried out with the aim of increasing the skill of surface wind speed predictions 
at interannual to decadal time scales. Also, these results are expected to be used for the preparation 
of a scientific publication. 
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3.8 Projected streamflow changes for Europe from an ensemble of 
climate and hydrological models 

In this case-study an ensemble of hydrological models from EUCP partners and end-user JRC were 
forced with EURO-CORDEX climate simulations. Performance-based weighting methods from WP2 
partners were used to derive a more robust climate signal of European streamflow changes.  

3.8.1 Brief introduction to the case  

The impact of climate change on future streamflow changes is uncertain. One way to address this 
uncertainty is the use of an ensemble of climate and hydrological models. In collaboration with EUCP 
partners ETH Zurich and IIASA and end-user JRC a multi-model assessment was conducted where we 
tried to obtain a more robust result. Three hydrological models were used to account for the 
hydrological model uncertainty and to assess the consistency: wflow_sbm (Deltares), CWatM (IIASA) 
and LISFLOOD (JRC). An ensemble of climate datasets from the EURO-CORDEX archive was used to 
represent climate model uncertainty. Two performance-based ensemble weighing methods were 
applied to obtain a more robust signal: the reliability ensemble averaging method (ICTP) and the 
Climate model Weighting by Independence and Performance method (ETH Zurich) that is 
implemented in ESMValTool (docs.esmwaltool.org; eScienceCenter). This resulted in discharge 
projections for high, low and mean river flows for 9 river basins spread over Europe. 

The case study has been published and described in more detail in:  

Sperna Weiland F.C., Visser R.D., Greve P., Bisselink B., Brunner L., Weerts A.H., 2021. Estimating 
Regionalized Hydrological Impacts of Climate Change Over Europe by Performance-Based Weighting 
of CORDEX Projections, Frontiers, https://doi.org/10.3389/frwa.2021.713537 

3.8.2 Methods 

 
CASE-STUDY AREA 
Nine European catchments were chosen based on their size, climate conditions and geographical 
position (Figure 3.8.1).  

 
HYDROLOGIC MODELS 
Three distributed hydrological models have been used: 

- The wflow_sbm developed at Deltares (Imhoff et al., 2020: Eilander et al., 2021) 
- The community water model CWatM developed by IIASA (Burek et al., 2020) 
- LISFLOOD developed by JRC (Knijff et al., 2010) 

 
All three models are distributed rain-full runoff channel routing hydrological models. They follow 
similar concepts but differ in their schematization. CWatM and LISFLOOD have been configured at the 
continental and global scale. wflow_sbm is configured on a basin scale, but largely builds upon global 
datasets. Both CwatM and LISFLOOD have been calibrated, the parameterization of wflow_sbm relies 
upon on physical datasets and pseudo-transfer functions. 
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Figure 3.8.1: Geographical position of the catchments in Europe. Numbers indicate the river basins; the Ångermanälven (1), 
Ebro (2), Glomma (3), Moselle (4), Oder (5), Sava (6), Severn (7), Suir (8), and Tanaro (9). Dots indicate the gauge locations 
used in this study. 

 
EURO-CORDEX 
Daily output from a 23-member ensemble of EURO-CORDEX regional climate simulations (Jacob et 
al., 2020) covering the period from 1970 to 2060 at a spatial resolution of 0.11° degrees  was used to 
force the hydrological models. The regional climate models are forced by a set of global climate 
models from the Coupled Model Inter-comparison Project 5 (CMIP5, see Table 3.8.1). For the future 
climate the Representative Concentration Pathway 8.5 (RCP8p5) was chosen to obtain a pronounced 
signal. The experiment relied upon readily available hydrological simulations and contains therefore 
some slight inconsistency. For the LISFLOOD simulations the CORDEX data sets were bias-corrected 
(Piani et al., 2010; Dosio and Paruolo, 2011) using E-OBS precipitation and temperature (Cornes et 
al., 2018).  
 
WEIGHTING METHODS APPLIED 
The first method applied is the Climate model Weighting by Independence and Performance 
(ClimWIP) method (Brunner et al., 2019). This method accounts for the historical GCM performance 
of meteorological variables considered relevant for the correct representation of regional hydrology. 
In addition, it considers the independence of the individual GCMs, effectively down-weighting models 
which are identified as closely related to one another. 

The second method is the Reliability Ensemble Averaging (REA) method (Giorgi and Mearns, 2002). 
This method considers the model bias for the current climate and the GCM reliability in terms of the 
convergence of the GCM specific future discharge change with the weighted ensemble mean future 
change to calculate the overall GCM reliability factor. 
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Table 3.8.1: Overview of CORDEX simulations available for the three hydrological models, the X indicates that the 
hydrological model was run with this CORDEX GCM-RCM combination. 

Nr GCM RCM Wflow_sbm CWatM LISFLOOD 
1 CNRM-CERFACS-CNRM-CM5 CLMcom-CCLM4-8-17 X X X 
2 CNRM-CERFACS-CNRM-CM5 SMHI-RCA4 X X X 
3 ICHEC-EC-EARTH DMI-HIRHAM5 X X X 
4 ICHEC-EC-EARTH KNMI-RACMO22E X X X 
5 ICHEC-EC-EARTH SMHI-RCA4 X X X 
6 IPSL-IPSL-CM5A-MR SMHI-RCA4 X X X 
7 MOHC-HadGEM2-ES SMHI-RCA4 X X X 
8 MPI-M-MPI-ESM-LR CLMcom-CCLM4-8-17 X X X 
9 MPI-M-MPI-ESM-LR DMI-HIRHAM5 X X  
10 MPI-M-MPI-ESM-LR KNMI-RACMO22E X X  
11 NCC-NorESM1-M IPSL-WRF381P X X  
12 NCC-NorESM1-M KNMI-RACMO22E X X  
13 NCC-NorESM1-M SMHI-RCA4 X X  
14 IPSL-IPSL-CM5A-MR IPSL-WRF381P X X  
15 IPSL-IPSL-CM5A-MR KNMI-RACMO22E X X  
16 MOHC-HadGEM2-ES CLMcom-CCLM4-8-17 X X  
17 MOHC-HadGEM2-ES CNRM-ALADIN63 X X  
18 MOHC-HadGEM2-ES IPSL-WRF381P X X  
19 MPI-M-MPI-ESM-LR CLMcom-ETH-COSMO-

crCLIM-v1-1  
X   

20 NCC-NorESM1-M CLMcom-ETH-COSMO-
crCLIM-v1-1  

x   

21 ICHEC-EC-EARTH CLMcom-CCLM4-8-17   X 
22 INERIS IPSL-WRF331F   X 
23 MPI-M-MPI-ESM-LR SMHI-RCA4   X 

3.8.3 Results 

The graphs in figure 3.8.2 display the historical discharge regime for the period 1981-2010 as simulated 
by the three hydrological models (from left to right: wflow_sbm, CWatM, LISFLOOD) using the CORDEX 
datasets. As a reference the observed regime was plotted in black. For the wflow_sbm model the 
simulation of the historical meteorological data (E-OBS) was also added to the graph to get an 
impression of hydrological model versus climate data bias. In general, there is large variation between 
the hydrological simulations driven with the different CORDEX datasets. The discharge regimes 
obtained with LISFLOOD show highest resemblance with the observed regime as this model has been 
calibrated and the CORDEX precipitation and temperature have been bias-corrected. This clearly 
reduces the spread between the discharges obtained from the different CORDEX datasets.  

Table 3.8.2 and 3.8.3 present the projected changes for the period 2031-2060 for RCP8p5 for long-
term average 7-day minimum (3.1) and annual mean flow (3.2). Decreases in low flows are projected 
for the rivers in Southern Europe; the Tanaro and Ebro. Decreases in summer precipitation and 
increases in evaporation caused by rising temperatures decrease the low flow. For the Glomma and 
Ångermanälven in Scandinavia all model combinations project increases of the base flow. Increasing 
temperatures will lead to earlier snow melt, snow accumulation and melt processes currently highly 
influences the annual hydrological cycle. Precipitation amounts will increase for Northern Europe 
leading to higher base flows. For the other rivers the signal is less pronounced. The changes projected 
for mean discharge are still relatively consistent between the models, yet smaller than the changes 
projected for low flows. For the Ångermanälven, Glomma and Oder average flow is projected to 
increase. For the Ebro and Tanaro decreases in mean discharge are most likely. For the other rivers 
the change signal is small and less consistent. 
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Figure 3.8.2: Historical discharge regimes (m3 s-1) calculated over the period 1981-2010 from the CORDEX simulations 
(colored lines), the ensemble mean (blue dotted line) with from left to right (wflow_sbm, CWatM and LISFLOOD), observed 
discharge (black) and reference wflow_sbm run based on EOBS (dashed black). To refer to the CORDEX realizations the same 
color coding is used in all graphs. 

 

Table 3.8.2: Projected change in long-term average 7-day minimum low flow between the periods 1981-2010 and 2031-2060. 
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Table 3.8.3: Projected change in long-term average annual mean flow between the periods 1981-2010 and 2031-2060. 

  

Figure 3.8.3 presents the resulting weighted changes in 7-day minimum, mean and annual maximum 
discharge together with the overall ensemble mean changes and the ensemble mean change from all 
wflow_sbm and CWatM realizations. For most rivers the changes projected by (1) the full non-
weighted ensemble, (2) the ClimWIP weighted ensemble are of the same order of magnitude. The REA 
method results in deviating changes. The main cause for this is the large climate model bias for the 
historical period. All realizations are biased, and REA assigns high weights to the least biased historical 
realizations. The results of the ClimWIP method are more promising. 

The difference between the unweighted ensemble change and the change projected with the ClimWIP 
weighting method do not differ that much. While with the ClimWIP method 2 out of 6 models are 
assigned only a weight of ~5% and one model clearly dominates the rest (ICHEC-ECEARTH). This 
indicates that this model, that performs best compared to the other 5 GCMs when evaluated on large 
scale climate variables, also provides basin scale discharge projections that are in line with the 
projections obtained when the full ensemble is considered.  

 

Figure 3.8.3: Projected future changes in annual mean discharge based on the full set of realizations - Unweighted ALL (blue), 
the Reliability Ensemble Averaging method – REA (orange), the realizations available for CWatM and LISFLOOD – Unweighted 
CWAtM, wflow_sbm (green) and ClimWIP (red) for the nine selected river basins. Together with the 5 and 95% uncertainty 
bounds of the full ensemble (blue dash). 
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3.8.4 Lessons learned 

In line with existing work, the future projections indicate likely discharge decreases for the rivers in 
Southern Europe whereas increases are more likely for basins in Northern Europe. The large set of 
hydrological CORDEX based simulations we had available for three different hydrological models 
allowed to draw additional conclusions. The influence of the hydrological model, its calibration and 
the application of bias-correction on projected discharge changes showed to be limited in basins with 
a strong climate change signal. Yet, in central Europe where the changes are more variable the 
different model chains result in variable projections. 

The consistency in the projected 7-day minimum flow statistic is highest in Southern basins. Projected 
changes in maximum flow are highly variable. There is clearly an uncertainty in projected maximum 
flow, caused by the large uncertainties in climate model precipitation. In addition, the 30-year time 
periods are too short to provide a representative set of annual maxima. Finally, estimates of peak 
flows are model dependent and rather sensitive to different hydrological routing and model 
parameterizations. 

From the comparison between weighting methods it can be concluded that weighting climate models 
based on large scale climate patterns is more reliable than weighting on basin specific discharges. The 
REA method resulted in this study in very mixed and sometimes deviating change projections. 
However, both the REA and ClimWIP method favored simulations with ICHEC-EC-EARTH for at least 
part of the basins. The fact that a consistent change signal is obtained when either the full non-
weighted ensemble or a weighted change where a single model dominates the change signal is used, 
increases confidence in the projections. 

Finally, some uncertainties and biases in the change signal cannot be resolved by applying bias 
correction or post-processing weighting techniques. There remains a need for both improved 
historical meteorological data for bias-correction and climate model parameterization. 
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3.9 Ensemble hydrological impact simulations and projections under 
different forcing 

3.9.1 Brief introduction to the case  

The distribution of surface water and the availability of groundwater resources is not just determined 
by climatic and hydrological processes, but also heavily impacted by human water use and 
interventions. Considering an ever-growing population, leading to increasing food, energy and 
production demands relying on sufficient water resources, results in widespread impacts on the 
supply of water. By additionally considering potential water shortages (or excess) arising from recent 
and anticipated climate change, a reliable water supply is largely at risk in regions with large water 
demand as well as regions likely to experience drying climatic conditions. Under these conditions, 
water demand is often met through water extractions at the expense of environmental flows and 
water-dependent ecosystems or through increasing abstraction of non-renewable groundwater 
resources. The nexus of water-climate-human interactions calls for more holistic approaches 
considering both climatic and socio-economic pressures to assess their distinct as well as combined 
impact on the availability and accessibility of water resources, and on the occurrence and intensity of 
hydrological extremes, such as floods and droughts. 

Within EUCP, IIASA developed a new large-scale hydrological rainfall-runoff and channel routing 
model that can be used to assess large-scale changes in hydrological conditions in a changing world, 
while considering the impact of human interventions: the Community Water Model (CwatM, Burek et 
al., 2020). CwatM is the newest model in the slowly growing range of global hydrological models. In 
comparison to more traditional, catchment-scale hydrological models, these models are designed at 
grid cell level and can be used to assess large-scale historic and projected changes in hydrological 
characteristics and water resources forced by either observations-based (such as, e.g., reanalysis data) 
as well as projected climate model data. Within EUCP, CWatM was utilized on a 5’ (ca. 9x9km) spatial 
and daily temporal resolution across Europe. Using data provided by EUCP partner KNMI and in 
collaboration with Deltares, CWatM was forced by two sets of high-resolution regional climate model 
datasets widely used and partly generated within EUCP: (i) an ensemble of 20 regional historical and 
future climate simulations based on different regional climate models subject to a set of global climate 
models determining the associated boundary conditions, as well as (ii) pseudo-global warming (PGW) 
experiments using a regional climate model in a European domain subject to reanalysis-based 
boundary conditions under (a) reference and (b) 2K-global warming conditions. The set of experiments 
enabled the assessment of impacts of historical and projected water demand on hydrological 
extremes compared to natural conditions, as well as the potential impact of historical water use under 
conditions of 2deg global warming. Please refer to the EUCP deliverable 4.2 for more information 

Based on the ensemble approach and the unique application of PGW simulations in hydrological 
impact simulations, the focus of IIASA’s collaborative work within EUCP was to find new means in how 
to represent uncertainty quantitatively in a way that is both scientifically correct and meaningful to 
the diverse users, such that it can be implemented into participatory assessments of water-related 
climate risks and adaptation strategies. As projected increases in mean water scarcity pose significant 
challenges to societies, economies, and ecosystems within Europe and globally, IIASA further led a 
study highlighting that required adaptation and water management actions need to be implemented 
under conditions of large uncertainties and structural and governmental challenges, calling for a 
widespread and immediate transition and/or transformation towards a sustainable use of available 
water resources (Greve et al., 2018). 
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3.9.2 Methods 

The hydrological model CWatM has been used to provide historical simulations and projections of 
streamflow across a European domain (see Fig. 3.9.1) covering most of European major rivers. 
However, some of the major eastern European river basins (e.g., the Volga river) are not entirely 
covered by the domain of the applied forcing data and are exempt from this analysis (see Fig. 3.9.1). 
Next to analyses at the grid cell level, we further focus on a set of medium-size river basins from the 
European HydroBASINS dataset (Lehner et al., 2013) to investigate impacts at the basin scale. We 
selected 134 independent basins ranging between 5.000km2 and 30.000km2. Hydrological extremes 
are here assessed in terms of annual peak daily discharge and annual peak (lowest) daily low flow. 
We further assess low and high flows defined as the 5th and 95th percentile of the daily discharge 
distribution of all years (Fig. 3.9.4). However, as a sufficient supply of water is often most critical 
under low flow conditions, we particularly focus on the lower tail of the distribution of daily 
discharge and additionally include estimates at the 1st percentile when assessing the PGW 
experiments.  

 

Figure 3.9.1: Major basins (light blue) within the EU-Cordex domain. Please note that major eastern Europe basins are not 
fully within the domain of the EU-Cordex forcing data and are excluded from the modelling setup. The domain indicated by 
dashed lines correspond to a smaller domain used for the PGW experiments. A set of 20 gauging stations (position as indicated 
by grey dots) within medium to large basins (dark blue) across Europe is chosen to illustrate impacts at catchment level in 
more detail. 

MODEL 
CWatM is a hydrological rainfall-runoff and channel routing model developed at IIASA (Burek et al., 
2020). It is process-based and used to quantify water availability, human water use and the effects of 
water infrastructure, including reservoirs, groundwater, and irrigation. CWatM is designed at grid 
level, with two native versions for 0.5° and 5’ resolutions at global scales (with sub-grid resolution 
taking topography and land cover into account). However, given different input data, the model can 
be set up at any resolution ranging from kilometer-scales up to coarse climate-model specific 
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resolutions. As forcing data, the model requires daily estimates of precipitation, as well as surface air 
temperature, wind speed, relative humidity, incoming long- and shortwave radiation, and surface air 
pressure as inputs to calculate potential evaporation. These variables are among the standard output 
of state-of-the-art Earth system and climate models, as well as observation-based forcing and 
reanalysis datasets. In comparison to the substantial number of highly specialized and parameterized 
catchment-based models, gridded, large-scale hydrological models such as CWatM still remain a niche 
within the hydrological community. Promoting the use of these models and increasing their 
accessibility has been the main motivation for the development of CWatM, as the model aims to 
overcome this barrier by implementing an open-source, modular modeling approach covering 
regional to global scales. The source code is available at Zenodo and Github 
(https://github.com/CWatM). All simulations are generated here using a calibrated version of CWatM. 
The model has been calibrated against 363 discharge time series from gauging stations across Europe. 
In comparison to observed discharge, CWatM shows slight biases within the range of +/- 20% in mean 
discharge, as well as in the 5th and 95th percentile (low and high flows) in the majority of basins  

FORCING DATA 
A 20-member multi-model ensemble of EURO-CORDEX regional climate simulations covering the 
period from 1961 to 2100 at 0.11° spatial resolution has been used. We use daily output of the 
required forcing variables within this period to force CWatM. The European-Coordinated Downscaling 
Experiment (EURO-CORDEX, Jacob et al., 2020), as part of the World Climate Research Program 
(WCRP) CORDEX initiative, coordinates the regional climate modelling activities of various research 
groups and institutes. The regional climate models are itself forced by a set of global climate models 
from the Coupled Model Intercomparison Project 5 (CMIP5, see Table 3.9.1). The period from 1961 to 
2005 thus corresponds to the historical period of the associated CMIP5 data. From 2006 to 2100, 
CMIP5 simulations are based on the high climate change scenario under the Representative 
Concentration Pathway 8.5 (RCP8.5).  

Further, a set of pseudo-global warming experiments (Prein et al., 2017; Brogli et al., 2019) covering 
the period from 1979-2010 provided by the EUCP partner KNMI and generated and used within WP2 
have been used. These simulations are based on the RACMO regional climate model (that is also part 
of the EURO-CORDEX ensemble) at 0.11° spatial resolution covering a smaller subdomain of the EURO-
CORDEX domain (see Fig. 3.9.1). In the reference experiment (i) RACMO is forced by unperturbed ERA5 
reanalysis data, while in the pseudo-global warming experiment (ii) the forcing data consist of 
perturbed reanalysis data.  Perturbations added to ERA5 correspond to climate change patterns 
retrieved from a 16-member ensemble of EC-EARTH (a CMIP5 climate model) global climate 
simulations under conditions of 2K global warming. By construction the two forcing data sets are 
primarily different in their thermodynamics consistent with 2K global warming (higher temperatures 
in the perturbed forcing data; enhanced stratification of mean temperature vertical profiles; larger 
atmospheric vapour contents corresponding to the higher temperatures, but generally slightly lower 
relative humidity), while they are quite similar in their day-to-day large-scale circulation as enforced 
by ERA5. 
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EXPERIMENTAL DESIGN 
To enable a thorough impact assessment concerning water use and associated uncertainties, CWatM 
is used (i) under pristine, natural conditions with no representation of water demand, and (ii) under 
conditions considering water demand from the agricultural, industrial, and household sector, and 
considering (a) historical conditions, and (b) projected climate changed conditions. Thus, for both the 
EURO-CORDEX ensemble and the KNMI-PGW data, a set of four experiments is generated (see Table 
3.9.1). Additionally, when using the PGW forcing, we perform simulations by adjusting historical water 
withdrawals to different relative levels under PGW conditions (ranging between +/- 50% of historic 
water withdrawals), thereby providing an ad hoc representation of multiple, potential future water 
management scenarios. That enables us to directly identify the sensitivity of projected changes in 
average discharge conditions against relative changes in water withdrawals (in terms of historical 
water withdrawals). Assessing average and low   
flow sensitivities further provides insights into 
adaptation and mitigation potentials under 
water scarcity and drought conditions, guiding 
the design of efficient, sustainable, and robust 
water management interventions. 

3.9.3 Results 

EURO-CORDEX FORCING 
Based on the full EURO-CORDEX ensemble provided as forcing to CWatM, mean daily discharge tops 
well above 1000m3/s in most of the major European river basins, with highest discharge values 
reached in the Danube basin. Average annual daily peak low flows and low flows (5th percentile) are 
considerably smaller, with few southern European basins at risk to run completely dry under 
conditions of prolonged drought. Nonetheless, peak discharge in all major basins across Europe 
reaches values well above 1000m3/s. 

 

Figure 3.9.2:  Relative difference (in percent) in ensemble-average annual low flows (upper row) and high flows (bottom row) 
between nat-ref and (a,d) dem-ref in the historic period (1980-99), (b,e) nat-fut in the future period (2040-59), and (c,f) dem-
fut in the future period (2040-59). The left column (a,d) illustrates the impact from human water use on low/high flows, 
whereas the middle column (b,e) illustrates the climate change impact. The combined impact is shown in the right column. 

Experiment Climate change Water demand 
nat-ref - - 
dem-ref - + 
nat-fut + - 
dem-fut + + 
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Comparing low and high flows under pristine, natural conditions (nat-ref) to the other experiments, 
reveals several important insights on the impact of human water use and climate change on 
hydrological extremes across Europe (see Fig. 3.9.2). Under dem-ref, i.e., by adding human water use, 
considerable decreases in low flows are found across southern and central Europe, with largest 
decreases in most of the heavily managed central European basins. For low flows under nat-fut, i.e., 
by adding a climate change response, the common pattern of decreases in southern Europe vs. 
increases in northern Europe is evident. The combined response in low flows (dem-fut) shows an 
amplified drying in most parts of southern and central Europe (due to decreases in dem-ref plus drying 
in nat-fut). Increasing low flows in the combined response are only found in Scandinavia and the Alps. 
High flows under dem-ref only shows no to small negative changes. The relative climate response in 
high flows (nat-fut) is also weaker in comparison to the response in low flows (even though absolute 
values might still be considerable). 

 

Figure 3.9.3: Relative difference (in percent) in average annual a) low flows, and b) high flows for the full set of EU-Cordex 
forcing models in the selected basins. Differences relative to nat-ref are estimated for nat-dem in the historic period (blue, 
1980-99), nat-fut in the future period (light red, 2040-59), and dem-fut in the future period (dark red, 2040-59). The boxes 
(horizontal lines) indicate the interquartile (full) range of relative differences from the set EU-Cordex forcing models. The 
center line in each box denotes the median response. 

Considering the selected basins (see Fig. 3.9.1) enables a more detailed assessment of differences 
between the experiments and a closer look at the associated uncertainties. Fig. 3.9.3 highlights the 
uncertainty originating from the 20-member EURO-CORDEX ensemble. Regarding low flows, the 
(near-natural) Scandinavian catchments (Dalaelven, Glama) show significant increases due to climate 
change, while human water use only results in small decreases by an order of magnitude less. For 
most central European basins, the water use impact is substantially larger and dominates the 
combined response. These basins are subject to substantial water withdrawals and water 
consumption (Fig. 3.9.3), especially resulting in widespread impacts during the driest period of the 
year. Since central Europe is located in between wetting signals in Scandinavia and drying signals in 
the Mediterranean, the climate change response is relatively weak. The impact on high flows is, again, 
considerably smaller, only ranging between +/- 10% for most European basins.  
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 PGW FORCING 
 

 

Figure 3.9.4: Mean discharge and low flows under reference conditions at grid scale (1st column) and at basin scale (2nd 
column). Relative differences in mean discharge and low flows between PGW and reference conditions at grid scale (3rd 
column) and at basin scale (4th column). Please note the difference in scaling between average discharge (top row) and low 
flows (2nd, 3rd row). Grid cells and basins with average discharge < 10 m3/s are not shown in columns 2,3, and 4. 

Simulated differences between reference and PGW conditions resemble the well-known pattern of 
southern European drying and northern European wetting (see Fig. 3.9.4). That signal is evident in 
both average and low flow statistics. However, the high-resolution modeling approach used here 
reveals significant regional differences. For example, while declines in average discharge are found in 
most regions and basins surrounding the Mediterranean Sea, some southern European regions do not 
show distinct decreases under conditions of 2K global warming. These are primarily regions in 
mountainous northwestern Spain, as well as basins surrounding the northern Adriatic Sea. Increases 
in average discharge are primarily found within the northeastern parts of the study domain and, to a 
lesser extent, in mountainous regions across Europe (e.g., the Alps). Most western and central 
European regions only show small relative differences in mean discharge (+/-10%). In contrast to mean 
discharge, the total extent of regions and basins showing declines in low flow conditions is 
considerably larger, extending into various parts of western and southeastern Europe. Decreases in 
Q10p and Q1p are particularly large in basins surrounding the Mediterranean Sea but are also 
apparent in France, Benelux, and the British Isles. Increasing low flows are located in Alpine regions 
and the northeastern parts of the study domain. 
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Figure 3.9.5: Sensitivity of mean discharge and low flows under PGW conditions to relative changes in water withdrawals at 
grid scale (1st row) and at basin scale (2nd row). The scale shows relative declines in (left column) average discharge (middle) 
Q10p, and (right) Q1p corresponding to a 10% increase in water withdrawals. Grid cells and basins with average discharge < 
10 m3/s are not shown (dark gray). 

The storyline-based experimental adjustment of historic water withdrawals under PGW conditions 
enables an assessment of the sensitivity of average discharge and low flows to changing water 
withdrawals. We have here performed 11 hydrological simulations ad-hoc adjusting water 
withdrawals between 50% and 150% of historic water withdrawals. That range represents differences 
that can occur when applying different scenarios of future water withdrawals across developed 
regions, such as Europe. In fact, across Southern Europe, even increases in water withdrawals beyond 
150% can occur under more pessimistic scenarios, while decreases in water withdrawals might occur 
across Central Europe under more optimistic scenarios. Relative adjustments in domestic and 
industrial water withdrawals are realized by applying the percentage difference. Irrigation demand 
depends on available soil water and is potentially different under PGW conditions. However, to enable 
a direct comparison to adjusted domestic and industrial withdrawals, we also apply the percentage 
difference in relation to irrigation withdrawals under reference conditions. 

The relative sensitivity to increasing water withdrawals is regionally different (see Fig. 3.9.5), and, to 
a large extent, depends on the amount of upstream water withdrawals. Low flow sensitivities are thus 
highest in regions with large (upstream) water withdrawals (e.g., Central Europe) and can reach up to 
parity resulting in decreases of 10% in low flows per 10% increase in water withdrawals. Such high 
sensitivities are primarily located in upstream areas of Central European rivers (e.g., Rhine, Meuse, 
Seine) in France, Benelux, and Germany.  Relative sensitivities in average discharge are, however, 
relatively small in comparison to low flow sensitivities. The response to varying levels of water 
withdrawals (within the range of +/- 50% of historic water withdrawals) further exceeds the climate 
change response of 2K global warming in average and low flows across many parts of Central and 
Western Europe. Hence, assuming increases in water withdrawals of 50% or less can regionally double 
the climate-only response. If differences of this magnitude also exist between water use scenarios, 
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identified changes in low flow conditions can either be neutralized or amplified, thereby increasing 
uncertainties and hindering robust water management assessments. On a second note, high 
sensitivities to water withdrawals also provide the potential to manage climate-driven decreases in 
low flows. Within the identified regions across Central and Western Europe, reduced future water 
withdrawals of up to 50% can potentially preserve current low flow conditions also under conditions 
or reduced flows due to 2K global warming. 

3.9.4 Lessons learned 

Within EUCP, IIASA developed a large-scale hydrological and water resources model that can be used 
in climate change impact assessment at regional to global scales. By using high-resolution climate 
forcing data, impacts on hydrological extremes under water use and climate change conditions have 
been assessed.  

Based on different modelling experiments, climate and water demand impacts on low/high flows have 
been singled out and assessed across Europe. In comparison to previous research excluding water 
demand estimates, the research presented in this report illustrates the significant impact of human 
water use particularly on low flows. It has been argued before (van Loon et al., 2016), that hydrological 
droughts are in parts driven by human influences on rivers and streams. The findings presented here 
largely support this statement and urge for a more comprehensive assessment of current and future 
risks and losses due to hydrological extremes by accounting for both climate and socio-economic 
change. 

The presented results further highlight the Mediterranean region as a hotspot of climate change. It is 
likely that future climatic conditions will decrease flows in both the driest and wettest periods of the 
year. Low flows in dry periods will decrease substantially, thereby not just threatening domestic, 
agricultural and industrial water supplies, but also environmental flows and water-dependent 
ecosystems. While the impact of changing water withdrawals on relative changes in projected mean 
discharge is limited, the results also show that projected low flows are sensitive to differing water 
withdrawals under conditions of 2K global warming. However, while several studies solely investigated 
the climate change impact on low flows, our results provide a coupled analysis of conditions under 2K 
global warming and their sensitivity to different, idealized water use scenarios. We show that even 
minor changes in water withdrawals can lead to differences in projected low flows that exceed the 
climate change response throughout Central and Western Europe - mainly due to large sensitivities 
and a relatively small climate change response. That particularly highlights that quantitative 
assessments of low flows under future warming are impacted by changing future water withdrawals 
across highly populated and industrialized regions. Therefore, including water withdrawals in 
hydrological impact assessments is of utmost importance to communicate the associated broad range 
of uncertainties. Assessments of climate change impacts in near-natural catchments provide only part 
of the anticipated response and do not necessarily reflect changes experienced within heavily 
managed river basins, where climate change assessments for adaptation are needed most. Our 
storyline-based results also highlight new ways to communicate how to manage climate change 
impacts on river flow, especially within the most critical periods of the year. Regions of substantial low 
flow sensitivity to water withdrawals will benefit most from coordinated efforts to reduce water 
withdrawals at regional, national and transnational scales. 
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3.10 Pluvial flood hazard and risk, and risk reduction measures – city of 
Milan  

3.10.1 Brief introduction to case  

Flood risk is accountable for the largest economic losses in Europe and in Italy, and is responsible for 
damage exceeding 158 and 38 billion Euros respectively over the period 1980-2020 (Mysiak et al., 
2022). Whereas floods caused by high river stages and storm surges have been addressed via the 
hazard mapping and assessment mandated by the Floods Directive (2007/60/EC), the hazard arising 
from spontaneous overland runoff from extreme precipitation events in urban context received lower 
attention. Pluvial floods occur when rainwater is not absorbed by ground or urban drainage systems. 
Intense and spatially concentrated precipitation events in densely developed urban areas can result 
in excessive water flow which can cause sizeable damage to tangible assets. The projected climate 
change in Europe is expected to increase the intensity and frequency of extreme rainfalls, which in 
combination with the continuing land conversion and urban expansion will lead to higher pluvial flood 
risks and expected damage and loss. It is important therefore to design adequate financial protection 
and risk mitigation strategies such as sustainable urban drainage (SUDS).  

Here we explore pluvial hazard risk and risk-mitigation measures over the city of Milan in northern 
Italy. The metropolitan area of Milan is the second largest in Italy, home to 3.3 million residents. The 
Milan City Council declared a climate and environmental emergency in May 2019, a year before the 
national government did. Milan is member of the Covenant of Mayors for Climate and Energy, C40 
Cities Climate Leadership Group, the Resilient Cities Network. The city's Resilient Cities office is a part 
of the Green Transition Department. This department coordinates the Air and Climate Plan (ACP) and 
the Climate Risk Assessment. The latter identified heat and flood risks as the city’s main climate-
related perils. The ACP is integrated within the City Masterplan and the Resilience strategy. The city's 
climate risk assessment was conducted at the census scale and identified areas at risk, based on social 
(high density in housing, vulnerable population, presence of unemployed population groups, etc.), 
economic and environmental conditions.  

Hydraulic modelling in complex urban environments characterised by high degree of impermeable soil 
and presence of drainage/sewage network are associated with high costs. Here we use a simplified 
and computationally efficient raster-based model based on a hierarchical filling and spilling algorithm. 
The same model has been used for the Copernicus Sectoral Information System (C3S) for pluvial flood 
risk assessment in 20 European cities, forced by dynamically downscaled climate reanalysis 
(Essenfelder et al., 2021). Building upon that work, we extended the analysis using the convection-
permitting climate simulations produced in EUCP (WP3) and simulated the effects of the nature-based 
solutions, reducing the pluvial hazards and risk. Green Infrastructure (GI) (EEA, 2017) are defined as a 
strategically planned network of green and natural elements supporting a wide range of services and 
benefits to people (EC, 2013a). In urban environments, GI can be open green spaces, as parks and 
gardens, green roofs, green alleys, permeable pavements and vegetated buffers. These elements 
contribute to flood regulation increasing the soil capacity to retain and infiltrate water controlling the 
storm-water runoff and peak flow (EC, 2013b). To increase and maximise the flood regulation capacity 
of GI, they should be strategically distributed and connected across the city. Connectivity is considered 
a key pillar to maintain healthy and well-functioning ecosystems that can support ecological functions 
and delivery of services (Mitchell et al., 2013, 2015) 

This methodology and results are further explained in Staccione et al (in preparation for submission) 
‘Connected urban green spaces for flood risk reduction in the Metropolitan area of Milan’. 
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3.10.2 Methods  

Climate forcing: We used high resolution, convection-permitting climate simulations produced in WP3 
over the ALP-3 domain. The simulations were forced EC-Earth model. We used RCP8.5 and performed 
the analysis for two future periods: from 2041 to 2050 and from 2090 to 2099. Probabilistic extreme 
hourly rainfall rates were estimated through statistical analysis of the annual maximum hourly 
precipitation rates. The Generalised Extreme Value (GEV) distribution was used to estimate maximum 
rainfall rates for probabilities ranging from 0.5 (return period RP 2 years) to 0.001 (RP 1000 years).  

Hazard model. Pluvial flood hazard maps were generated for each rainfall probability using a 
simplified raster-based model based on a hierarchical filling and spilling algorithm (Samela et al., 
2020). This fast-processing, hydrostatic model identifies inundated areas on the basis of high-
resolution digital elevation model and is suitable for application over large urban areas. It accounts 
for spatially distributed rainfall input and infiltration, building upon pixel-based Green-Ampt model 
(Green and Ampt, 1911).  

Economic impact. Direct tangible damages to urban buildings were estimated using stage-damage 
models (Huizinga et al., 2017) and reconstruction costs. Building footprints were retrieved from 
OpenStreetMaps (OSM, 2021) and classified as residential, commercial or industrial. Where the OSM 
did not indicate the specific use of the building, we used the classification from the Corine Land Cover 
2018 dataset (CLC, 2018). Build-up areas not classified as residential, commercial, or industrial were 
not accounted for in this analysis (e.g. infrastructure or agriculture). Reconstruction costs per square 
metre are extracted from country-specific cadastral records. Direct tangible damage was estimated 
for every hazard probability and aggregated into Expected Annual Damages (EAD).  

Green infrastructure. The existing green infrastructure (GI) network were extracted from the 
European Settlement Map of 2017, reclassified to 100m grid (Ferri et al., 2017). The cells with more 
than 25% green cover were included in the network. We performed morphological spatial pattern 
analysis (Soille and Vogt, 2009; Vogt et al., 2009) to identify core areas and connectors. We estimated 
landscape connectivity index (Integrate Index of Connectivity, IIC) (Pascual-Hortal and Saura, 2006). 
IIC is used to rank the core areas based on their contribution to the overall connectivity of the network. 
As next, we identified areas that simultaneously contribute to improving the connectivity of the GI 
network as well help to reduce the pluvial flood hazard. For this end, we used walking distance (5 to 
10 mins) from existing green areas. This respond to the goal of the Milan city administration to 
improve accessibility to green spaces (EEA, 2020). The identified areas were further assessed in terms 
of flood risk reduction and land use conversion potential. As next, we built 3 scenarios of green 
infrastructure's improvement: greening of buildings (GB), which consider the establishment of green 
roofs; greening spaces (GS), which include the conversion of open space to green spaces, and greening 
the city (GC), which include both green buildings and spaces. For each scenario, we investigated 
different degrees of green conversion: 25%, 50%, 75%, 100% of all suitable areas. We applied the 
following criteria to prioritise areas of interventions: cumulative water damage to buildings 
(Essenfelder et al., 2021), share of the existing open green space (Ferri et al., 2017), share of suitable 
areas for and potential impact of green roofs (Comune di Milano, 2016). The latter is defined as a 
function of sealed areas in the surrounding areas. We run pluvial hazard model for each scenario for 
a rain event of 54.68 mm in 1 hour, in accordance with the estimated depth-frequency values of 
extreme precipitation events in Essenfelder et al., 2021.  
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3.10.3 Results  

Figure 3.10.1 shows the results of the statistical analysis performed to estimate the extreme hourly 
rainfall rates over the city of Milan under the different climate periods.  

 

 

 
Figure 3.10.1: Statistical data analysis and fitting of a GEV distribution function for estimating extreme hourly rainfall rates 
(in mm/hour). On the left, the density plots of observations (black line) and modelled (blue line) data. On the right, the return 
period and estimated extreme hourly rainfall rates (in mm/hour). On the top row, the historical period. On the middle row, 
the RCP8.5 2041-2050 period. On the bottom row, the RCP8.5 2090-2099 period.  

The fitting of a GEV distribution function to the annual hourly maxima rainfall rates allows for the 
computation of the return levels associated with a certain probability. The estimated resulting return 
levels for the extreme hourly rainfall rates (in mm/hour) are shown in Table 3.10.1. 

Table 3.10.1: Extreme hourly rainfall rates (in mm/hour) for different return periods (RPs) estimated as a result of the extreme 
value analysis using a GEV distribution function. 

RP (years) 2 5 10 20 50 75 100 200 250 500 1000 
Historical - 1996-2005 44.3 48.4 50.7 52.7 55.0 55.9 56.5 57.9 58.3 59.5 60.5 

RCP8.5 - 2041-2050 41.6 49.5 55.7 62.5 72.6 77.6 81.4 91.3 94.7 106.4 119.5 

RCP8.5 - 2090-2099 39.4 55.3 71.2 92.3 132.0 155.3 174.6 232.4 255.1 342.0 460.1 

 

We observe an increase in the intensity of extreme hourly rainfall rates throughout the 21st century. 
Accordingly, a 1-in-5 years event is expected to increase by 2.2% and 14.2% by the mid-century and 
late-century, respectively, while a 1-in-100 years event is expected to increase in intensity by 44.0% 
and 209.1%, respectively. The estimated EAD under the historical climate period for Milan is 744 
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million EUR, with the historical city centre (including train station area) being one of the most affected 
areas. As shown in Figure 3.10.3, the EAD from direct tangible damages are expected to increase by 
1.36% (10.1 million EUR) and 9.49% (70.6 million EUR) by mid- and late-century, respectively.  

  
Figure 3.10.2: Pluvial flood damage analysis for the city of Milan (Italy). On the left, the building reclassification around the 
city centre. On the right, the estimated direct tangible damages per thousand EUR for an extreme rainfall event of RP of 1-
100 years under the historical climate period. 

 

  
Figure 3.10.3: Expected direct tangible damages due to pluvial flooding in Milan under the historical, RCP 8.5 mid-century, 
and RCP 8.5 late-century climate scenarios. On the left, the expected damage – probability curve. On the right, the expected 
annual damage (EAD) for each climate scenario.  
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The existing GI network is shown in Figure 3.10.4. The many green areas of the city are concentrated 
in the peripheral zones of the city. Here, the network is well developed and connected. The inner part 
of the city, on the other hand, has few or no core green spaces (connectivity index IIC = 0.1). 

 
Figure 3.10.4: Existing GI Network in the City of Milan. The green grid represents the percentage cover of green areas per cell. 
The lines (connections) and dots (core areas) are the graphical representation of the network. The size of dots indicates the 
importance of the area to the overall connectivity of the network. 

We identified around 6350 suitable cells with accessibility up to 5-10 minutes of walk. These are mainly 
located in the inner part of the city and respond to differently evaluation criteria (Figure 3.10.5). The 
cell contributing more to reducing flood damages are concentrated in the central and western part of 
the city. On the contrary, open space and roofs that are convertible to green areas are predominately 
located in the more peripheral areas. Green roofs are more suitable in central part of the city.  

Figure 3.10.6 show the prioritisation of potential green areas for the scenario ‘Green City (GC)’ 
according to the percentage of green conversion. In the top 25% potential green areas, we can already 
notice a more connected distribution of green spaces throughout the centre of the city, creating green 
corridors among central and peripheral green areas. We can observe a reduction of expected damage 
to buildings in this scenario (of almost 6% for total buildings), which is increasing up to 10% with a 
complete conversion to green (Figure 3.10.7). 
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Figure 3.10.5: Cells representing the suitable areas to be converted to green areas. The different maps show the 
characterisation of each cell in terms of (a) cumulative damage to buildings, (b) percentage areas of open spaces that could 
be converted to green, (c) percentage area of potential green roofs, (d) impacts of potential green roofs. 

 
Figure 3.10.6: Green City scenarios. Each map shows the prioritised areas to be converted to green according to different 
percentage area of suitable areas (a-25%, b-50%, c-75%, d-100%). The shades of green represent the new permeability values 
attributed to the converted cells. 
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Figure 3.10.7: Percentage reduction of direct damage estimated for all buildings in the three scenarios (Green Buildings -GB, 
Green Spaces - GS and Green City - GC), compared to the current situation (zero value of conversion). 

3.10.4 Lessons learned  

Nature-based solutions can play an important role, or a part thereof, in disaster risk reduction, climate 
adaptation and biodiversity protection, urban and rural sustainable agendas, health & sustainable 
livelihood, and other policy areas. NbS can provide means to mitigating climate risks - in this case 
through water flow regulation. Compared to engineered, built or fossil-based solutions, NbS 
approaches may be cost-effective and have many ecological, social and economic benefits. NbS face 
sizeable challenges and barriers to adoption, which - depending on the contexts - may include poor 
adaptation to given socio-cultural situations, possible ecosystem disservices (von Döhren and Haase, 
2015), absence of supportive governance and financial instruments to stimulate implementation, low 
social acceptance, limited business model innovation, and failure to account for the true social value 
of the generated benefits (Venkataramanan et al., 2020).   

For many stakeholders, the performance of NbS under extreme hazard conditions and their integrity 
in the face of climate change remains unclear. The unequal coverage and analytical depth of existing 
performance assessments resulted in relatively low investment in NbS by the private sector. A recent 
global study of NbS performance (Sudmeier-Rieux et al., 2021) evaluate methods, metrics, and data 
in terms of their strengths, weaknesses, and barriers to adoption for assessing risk reduction and co-
benefits by NbS. The study found significant knowledge gaps in terms of economic benefits generated 
by NbS and their distribution.  

In this work, we have demonstrated the usefulness of the EUCP convection-permitting climate 
simulations for the urban climate risk assessment and adaptation planning. This works builds upon 
and extends the C3S Pluvial Flood Risk Assessment in Urban Areas developed by CMCC and other 
partners. By using the EUCP climate simulation, we improved the existing pluvial hazard and risk 
assessment and demonstrated how NbS can mitigate the risk, while producing additional benefits in 
terms of temperature regulation, air quality improvement (by removal particle pollution), and protect 
soil and biodiversity. This study serves as a pilot for other cities across the ALP-3 EUCP domain. The 
open source/access modelling tools will be further exploited in a recent H2020 project REACHOUT2 in 
which Milan city serves as a hub for other surrounding cities. 

 

                                            
2 REACHOUT - Resilience in Europe through activating city hubs reaching out to users with triple-a adaptation tools 
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3.11 Projected impacts of extreme sea level and benefit-cost assessment 
of adaptation measures along Upper Adriatic Sea costs   

3.11.1 Brief introduction to case  

More than 700 million people all over the world live in low-lying coastal areas (McGranahan et al., 
2007), and almost 100 million are exposed to a 100-year return period flood event (Muis et al., 2016). 
Coastal flood risk increases in many places around the globe due to development (Bouwer, 2011; 
Brenden Jongman et al., 2012) and land subsidence (Nicholls and Cazenave, 2010; Syvitski et al., 2009). 
The climate change induced sea level rise (SLR) has contributed to this trend and is likely to become 
the main driver of coastal inundation risk (Hallegatte et al., 2013; Hinkel et al., 2014).  

With over 9,000 kilometres, Italy’s coast hosts many historically and economically valuable cities and 
heritage sites. Coastal hazards such as erosion, storm tide inundation and permanent flooding, can 
have strong adverse impacts on coastal regions, with loss of sandy shores, damage to settlements, 
infrastructure and ecosystems. Climate change can exacerbate these impacts due to rising sea levels 
and increasing impacts of waves and storms. Coastal erosion and temporary inundation due to storms 
are common, in particular in low lying areas of the Po river delta (in Emilia Romagna and Veneto 
regions).  

Coastal areas along the Upper Adriatic Sea (Italy) are highly exposed and vulnerable to coastal floods 
and the flood risk is projected to further increase as a result of sea level rise (SLR) and local subsidence. 
We focus on two coastal cities - Rimini (~ 150,000 residents) and Cesenatico (~ 27,000 residents) in 
Emilia Romagna, both among the most important destinations of summer tourism. For both areas, we 
assess the coastal flood risk under current and future scenarios and analyse the performance of 
implemented or planned/hypothetical coastal defence measures. The scenarios of extreme sea level 
account for the combined effect of sea level rise and subsidence rates. We use a high-resolution 
hydrodynamic model to identify areas prone to coastal floods under the baseline (undefended) and 
the structural coastal protection (defended) scenario. The defended scenarios accounts for the effect 
of a coastal barriers based on the design of Parco del Mare, an urban renovation project under 
construction in Rimini. The same defence structure is modelled along the coastal perimeter of 
Cesenatico. On the base of probabilistic hazard assessment, we estimated the expected annual 
damage (EAD) using a locally-calibrated damage model. Well informed coastal risk mitigation and 
adaptation actions require accurate and detailed information about the characterisation of coastal 
flood hazard and the performance of coastal defence options. Cost-benefit analysis (CBA) is widely 
used to evaluate the economic desirability of a disaster risk reduction (DRR) project (Jonkman et al., 
2004; Mechler, 2016; Price, 2018), helping decision-makers in evaluating the efficacy of different 
adaptation options (Bos and Zwaneveld, 2017; Kind, 2014). 

The results of the analysis has been published and described in more detail in Amadio, M., Essenfelder, 
A.H., Bagli, S., Marzi, S., Mazzoli, P., Mysiak, J., Roberts, S., 2022. Cost--benefit analysis of coastal flood 
defence measures in the North Adriatic Sea. Nat. Hazards Earth Syst. Sci. 22, 265–286. 
https://doi.org/10.5194/nhess-22-265-2022 (Amadio et al., 2022).  

3.11.2 Methods 

We model coastal inundation as a combined result of high tide, storm surge and action of waves. The 
latter combines wave setup (defined as an increase of mean sea level at the shore that is caused by 
the loss of wave momentum in the surf zone) with wave periodicity of incoming breaking waves (which 
defines wave swash, i.e. the amplitude of the time varying elevation due to breaking waves along the 
shore). Estimates of storm surge and tides and waves are obtained for the North Adriatic up to year 
2100 by combining reference hazard scenarios derived from the analysis of historical records (Armaroli 
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et al., 2012; Armaroli and Duo, 2018; Perini et al., 2017, 2016, 2011) with regionalised projections of 
SLR (Vousdoukas et al., 2017) and local vertical land movements (VLM) rates (Carbognin et al., 2009; 
Perini et al., 2017). We consider four scenarios of extreme sea level (ESL), ranging from low intensity-
high frequency to high intensity-low frequency, under current and future (2050 and 2100) conditions.  

We use hydrodynamic flood modelling approach which accounts for the effects of wind, waves, tide, 
current, and river run-off can be used (Barnard et al., 2019). Simplified hydrodynamic flood models 
focused on nearshore processes can reduce computational cost while taking into consideration water 
mass conservation (Breilh et al., 2013), aspects of flooding hydrodynamics (Dottori et al., 2018) and 
the presence of obstacles (Perini et al., 2016). We apply the ANUGA model (Roberts et al., 2015). Land 
morphology and exposure of coastal settlements are described by high-resolution DTM (LiDAR) and 
bathymetry, in combination with land use and buildings footprints. The DTM is supplemented with 
geometries of existing coastal protection elements such as jetties, groins and breakwaters obtained 
from the digital Regional Technical Map. 

In Rimini, the Parco del Mare is an urban renovation project which aims to improve the seafront 
promenade: the existing road and parking lots are converted into an urban green infrastructure 
consisting of a concrete barrier covered by vegetated sandy dunes with walking paths. This project 
also acts as a coastal defence system during extreme sea level events. The barrier rises 2.8 meters 
along the southern section of the town, south of the marina; no barrier is planned on the northern 
coastal perimeter. The Parco del Mare project was completed by 2021 and has been taken in account 
in the evaluation of the “defended” scenarios by adding the barrier elevation to the digital terrain 
model (DTM). In Cesenatico, the existing defence structures include a moving barrier system (Porte 
Vinciane) located on the port channel, coupled with a dewatering pump which discharge the meteoric 
waters in the sea. The barriers close automatically if the TWL surpasses 1 meter over the mean sea 
level, preventing floods in the historical centre up to 2.2 meters of TWL. Additional defence structures 
include the winter dunes, which consist of a 2.2 meter-tall intermittent, non-reinforced sand barrier. 
In the defended scenario, we envisage a coastal defence structure similar to Rimini’s Parco del Mare 
project, spanning both North and South of the port channel with a total length of 7.8 km. 

 
Figure 1: Prototype design of Parco del Mare project in Rimini. Adapted from JDS Architects (Amadio et al., 2022). 

The effect of hazard mitigation structures (both designed and under construction) are explicitly 
accounted by the model in the “defended” scenario, in contrast to the baseline scenario, where only 
existing defence structures (groins, jetties, breakwaters and sand dunes) are considered. 

Direct damage to physical assets is estimated using stage-damage models validated on empirical 
records (Amadio et al., 2019). The model was adapted to coastal flooding assuming that the dynamic 
of impact from long-setting floods depends on the same factors, namely: 1) hazard magnitude, and 2) 
type, size and value of exposed asset. Hazard magnitude can be defined by a range of variables, but 
the most important predictors of damage are water depth and the extension of the flood event (Jan 
Huizinga et al., 2017; B Jongman et al., 2012). The characterization of exposed asset is built from a 
variety of sources, starting from land use and buildings footprints obtained from the Regional 
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Environmental Agencies geodatabases and the Open Street Map database (Open Street Map, 2019). 
Additional indicators about buildings characteristics are obtained from the database of the 2011 
Italian Census (ISTAT, 2011), while mean construction and restoration costs per building types are 
obtained from cadastral estimates (CRESME, 2019).  

3.11.3 Results 

The output of the hydrodynamic model consists of a set of inundation simulations that include several 
hazard intensity variables in relation to flood extent: water depth, flow velocity, and duration of 
submersion. ESL scenarios are then summarized into inundation maps, each one representing the 
maximum value reached by hazard intensity variables during the simulated event at about 1 meter 
resolution. Figure 2 shows the flood extents corresponding to each RP scenario for Cesenatico study 
area. 

 
Figure 2: Cesenatico, extent of land affected by flood according to frequency of occurrence of ESL event up to 2100 for the 
baseline [left] and the defended scenario [right]. 

The Expected Annual Damage is calculated as a function of maximum exposed value and water depth. 
In Rimini, the EAD grows from around 650 thousand Eur under historical conditions to 2.8 million Eur 
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in 2050 and more than 32.3 million Eur in 2100. Under more extreme ESL scenarios, the benefits of 
the Parco del Mare project protecting the southern part of Rimini become more evident, avoiding 
about 65% of the expected damages in the defended scenarios compared to the undefended ones. In 
Cesenatico, the average EAD for the undefended scenario grows from around 270 thousand Eur under 
historical conditions, to 1.7 million Eur in 2050 and almost 26 million Eur in 2100. In our simulations, 
the designed defence structure (a static barrier with height of 2.8 m along 7.8 km of coast) is able to 
avoid most of the damage inflicted to residential buildings. The measure becomes less efficient for the 
most extreme scenarios in 2050 and 2100, when the increase in TWL causes the surmounting of the 
barrier (Figure 3).  

  
  

Figure 3: Cesenatico: Expected Annual Damage (EAD) according to undefended scenario up to 2100 [left]; EAD reduction 
thanks to hazard mitigation offered by the coastal barrier [right]. 

The estimates of avoided direct flood impacts are accounted in a DRR-oriented CBA to evaluate the 
feasibility of mitigation measures in terms of NPV, benefit-cost ration (BCR) and payback period for 
the two time-horizons (2021-2050: 30 years; and 2021-2100: 80 years). The Expected Annual Benefits 
(EAB) brought by defence measures grow at faster rate approaching 2100 in both sites, because of the 
larger expected damages from increasing floods severity. The cost of defence implementation is 
repaid by avoided damage after about 40 years in Cesenatico and after 90 years in Rimini. At 2100, 
the BCR is 0.9 for Rimini and 1.8 for Cesenatico.  

3.11.4 Lessons learned 

Probabilistic catastrophe models estimate the loss potential by combining properties or assets at risk 
with modelled hazards and damage/vulnerability models. High performance computing and advances 
in numerical computing algorithms have made it possible to develop a new generation of hazard and 
risk models and high-resolution exposure mapping. The EU Adaptation Strategy is supporting the key 
objectives of the European Green Deal (EC, 2019) and the EU Climate Law (EC, 2021). In February 2021, 
the European Commission adopted the new and more ambitious EU Climate Adaptation Strategy. The 
Strategy complements the European Climate Law and sets to foster adaptive capacity and socially-just 
transformations to climate-resilient society, fully adapted to the unavoidable impacts of climate 
change. The Strategy lays down policy directions on how to make adaptation smarter, faster and more 
systemic. 

Better understanding of climate related risks and the performance of risk reduction measures is 
fundamental for smart and accelerated climate adaptation efforts. Here, we estimate cost-benefit 
ratio of coastal defence measures, including through nature-based (or ecosystem services-related) 
solutions. We estimated an increase in expected damage for both urban areas from 2021 to 2100: in 
Cesenatico the EAD grows by a factor 96, in Rimini by a factor 49. Our results show that profitability 
of the coastal defence projects grow over time in both locations. The EAD under the baseline 
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hypothesis is expected to increase by 3.5-fold in 2050, up to 10-fold in 2100. The benefits brought by 
the coastal defence project become much larger in the second half of the century: the EAB grows 6.1-
fold in Rimini, 6.5-fold in Cesenatico, from 2050 to 2100. Avoided losses are expected to match the 
project implementation costs after about 40 years in Cesenatico and 90 years in Rimini. Benefits are 
found to increase proportionally to costs; the payback period in Cesenatico is the same considering 
either an investment on the protection of the whole town or only part of it. 
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4 Lessons learned and links established  

For part of the use-cases the interaction with the end-users was successfully established and indicators 
and products were derived that were at a level where they could easily be interpreted and used in 
follow-up work by the end-users themselves. The storyboards developed by eScienceCenter: EUCP 
Storyboards (eucp-project.github.io) provide a low-level summary for many of the use-cases. These 
storyboards have been shared at the multi-user forum (MUF) meeting to demonstrate what can be 
done with EUCP dataset and which sectoral assessments can be performed (see for more information 
deliverable 4.5). 

An example of strong stakeholder interaction is the collaboration with super-user JRC. Collaboration 
was established on the topics (i) future coastal erosion, (ii) decadal predictions for agricultural 
droughts and (iii) European streamflow projections. It must be said that this collaboration was partly 
through the scientific staff that were actively contributing to the scientific analysis themselves. But 
also for the Dutch Coast, the results of the future coastal erosion assessment are actively being shared 
with the Dutch Water Authority Rijkswaterstaat. 

The advantage within the above case-studies was the experience that some of the WP4 partners 
already had in using the decadal projections, the EU-CORDEX RCM data and global climate projections. 
As a result, the analysis could be started straight at the beginning of the project. 

For other case-studies the plans were ambitious. For example, the application of CP-RCM data from 
WP3 for flash flooding. These CP-RCM datasets were relatively new and posed quite some challenges 
in processing and derivation of meaningful indicators. The amount of data, especially for the still to be 
completed study with the ensemble of CP-RCMs was enormous and although the JupyterLab 
environment set-up by eScienceCenter enabled the data processing there were quite some hurdles 
on the way. Still many of the datasets were only available within the project team for the case-studies 
within the project. In the future it would be valuable when the CP-RCM datasets can, similar to the 
CORDEX and other CMIP datasets, be accessible through ESGF nodes in a CMOR compliant format. 
This would highly stimulate the uptake and use in the sectoral impact work by scientist as well as 
consultants / SMEs. This was also one of the comments received at the Multi-User Forum meeting. 
Others are keen to start using the data. Although, processing capacity will remain and issue. 

Another major challenge was the limited length of the CP-RCM time-series which hamper local 
statistical analysis. It took more time the first half of the project than anticipated during the proposal 
phase to tackle all these problems, some of the future CP-RCM datasets only became available after 
the first years of the project. In the first years of the project end-user contacts had been established 
for the urban flooding use-case. However, it took three years to generate the first valuable results. In 
addition, extreme value analysis for the localized urban projections were hampered by the limited 
length of the CP-RCM time-series and for the Deltares work a switch was made to regional Alpine flash 
flooding. In the end the end-user interaction was not achieved for this use case. Overall we conclude 
that the analysis of changes in extreme events could benefit from extended CP-RCM simulations of 
multiple decades to feed extreme value analysis. 

This end-user interaction has been established for the coastal flooding assessment for Rimini as well 
as for the city of Milan where rainfall extremes were derived from the CP-RCM datasets. This will be 
discussed in detail in deliverable 4.5. The Rimini and Milan case benefitted from experience gained in 
other past and ongoing projects. 

We do foresee that for the flooding topic and also for the wind drought and wind speed analysis 
further links can be established with the insurance sector, the energy sector and JRC in the future. 

Also, for other use-cases such as the wind drought analysis the climate model variables could not 
directly be used. Windspeed is available at 10 metres, but for the analysis for wind farms windspeed 
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at 100 metres is required. This required extra post processing here applied through a machine learning 
approach.  

When evaluating the collaboration within the EUCP project team we see that WP4 successfully 
employed datasets from WP1, WP2 and WP3. There was strong interaction with the modellers from 
WP1 for the work done by BSC. There was strong interaction between the modelling groups from WP3 
and Deltares. Ensemble interpretation and ensemble weighting techniques from WP2 partners were 
applied to reduce and interpret the uncertainty in the derived indicators of WP4. Some of the case-
studies build upon climate model datasets that were already developed outside the EUCP project. 
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